| 
 SIGMA 6 (2010), 006, 13 pages      arXiv:0802.2438     
https://doi.org/10.3842/SIGMA.2010.006 
 
Peterson's Deformations of Higher Dimensional Quadrics
Ion I. Dincă
 Faculty of Mathematics and Informatics, University of Bucharest, 14 Academiei Str., 010014, Bucharest, Romania
 
 
Received July 13, 2009, in final form January 16, 2010;  Published online January 20, 2010 
Abstract
 
We provide the first explicit examples of deformations
of higher dimensional quadrics: a straightforward generalization
of Peterson's explicit 1-dimensional family of deformations in
C3 of 2-dimensional general quadrics with common
conjugate system given by the spherical coordinates on the complex
sphere S2 ⊂ C3 to an explicit
(n–1)-dimensional family of deformations in C2n–1
of n-dimensional general quadrics with common conjugate system
given by the spherical coordinates on the complex sphere
Sn ⊂ Cn+1 and non-degenerate joined
second fundamental forms. It is then proven that this family is
maximal.
  
 Key words:
Peterson's deformation; higher dimensional quadric; common conjugate system. 
pdf (242 kb)  
ps (180 kb)  
tex (16 kb)
 
 
References
 
- Berger E., Bryant R.L., Griffiths P.A.,
The Gauss equations and rigidity of isometric embeddings,
Duke Math. J. 50 (1983), 803-892.
 
- Bianchi  L.,
Lezioni di geometria differenziale, Vols. 1-4, Nicola Zanichelli Editore, Bologna, 1922, 1923, 1924, 1927.
 
- Calapso  P.,
Intorno alle superficie applicabili sulle quadriche ed alle loro transformazioni,
Annali di Mat. 19  (1912), no. 1, 61-82.
 
Calapso  P.,
Intorno alle superficie applicabili sulle quadriche ed alle loro transformazioni,
Annali di Mat. 19  (1912), no. 1, 107-157. 
- Cartan É.,
Sur les variétés de courboure constante d'un espace euclidien ou non-euclidien,
Bull. Soc. Math. France 47 (1919), 125-160.
 
Cartan É.,
Sur les variétés de courboure constante d'un espace euclidien ou non-euclidien,
Bull. Soc. Math. France 48 (1920), 132-208. 
- Darboux G.,
Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Vols. 1-4, Gauthier-Villars, Paris, 1894-1917.
 
- Horn  R.A., Johnson C.R.,
Matrix analysis, Cambridge University Press, Cambridge, 1985.
 
- Peterson  K.-M., Sur la déformation des surfaces du second ordre,
Ann. Fac.  Sci. Toulouse Sér. 2 7  (1905), no. 1, 69-107.
 
 
 | 
 |