| 
 SIGMA 6 (2010), 015, 9 pages      arXiv:1002.0798     
https://doi.org/10.3842/SIGMA.2010.015 
Contribution to the Proceedings of the 5-th Microconference Analytic and Algebraic Methods V 
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry
Kwang C. Shin
 Department of Mathematics, University of West Georgia, Carrollton, GA, 30118, USA
 
 
Received October 11, 2009, in final form January 28, 2010;  Published online February 03, 2010 
Abstract
 
We study the eigenvalue problem −u''+V(z)u=λu in the complex plane with the boundary condition that
u(z) decays to zero as z tends to infinity along the two rays arg z=−π/2± 2π(m+2),
where V(z)=−(iz)m−P(iz) for complex-valued polynomials P of degree at most m−1≥2. We provide an
asymptotic formula for eigenvalues and  a necessary and sufficient condition for the anharmonic oscillator to have
infinitely many real eigenvalues.
  
 Key words:
anharmonic oscillators; asymptotic formula; infinitely many real eigenvalues; PT-symmetry. 
pdf (232 kb)  
ps (158 kb)  
tex (12 kb)
 
 
References
 
- Bender C.M.,  Boettcher S.,
Real spectra in non-Hermitian Hamiltonians having PT-symmetry,
Phys. Rev. Lett. 80 (1998), 5243-5246,
physics/9712001.
 
- Bender C.M.,  Hook D.W.,    Mead L.R.,
Conjecture on the analyticity of PT-symmetric potentials and the reality of their spectra,
J. Phys. A: Math. Theor. 41 (2008), 392005, 9 pages,
arXiv:0807.0424.
 
- Caliceti E.,  Graffi S.,    Sjöstrand J.,
PT symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum,
J. Phys. A: Math. Theor.  40 (2007), 10155-10170,
arXiv:0705.4218.
 
- Conway J.B.,
Functions of one complex variable. I, 2nd ed.,
Springer-Verlag, New York, 1995.
 
- Dorey P.,  Dunning C.,  Tateo R.,
Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics,
J. Phys. A: Math. Gen. 34 (2001), 5679-5704,
hep-th/0103051.
 
- Hille E.,
Lectures on ordinary differential equations,
Addison-Wesley Publ. Co., Reading, Massachusetts, 1969.
 
- Lévai G., Siegl  P.,  Znojil M.,
Scattering in the PT-symmetric Coulomb potential,
J. Phys. A: Math. Theor. 42 (2009), 295201, 9 pages,
arXiv:0906.2092.
 
- Mostafazadeh A.,
Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian,
J. Math. Phys. 43 (2002), 205-214,
math-ph/0107001.
 
- Shin K.C.,
On the reality of the eigenvalues for a class of PT-symmetric oscillators,
Comm. Math. Phys. 229 (2002), 543-564,
math-ph/0201013.
 
- Shin K.C.,
Eigenvalues of PT-symmetric oscillators with polynomial potentials,
J.  Phys. A: Math. Gen. 38   (2005), 6147-6166,
math.SP/0407018.
 
- Shin K.C.,
Asymptotics of eigenvalues of non-self adjoint Schrödinger operators on a half-line,
Comput. Methods Funct. Theory, to appear,
arXiv:1001.5120.
 
- Sibuya Y.,
Global theory of a second order linear ordinary differential equation with a polynomial coefficient,
North-Holland Mathematics Studies, Vol. 18, North-Holland Publishing Co., Amsterdam - Oxford, 1975.
 
- Znojil M., Siegl P.,   Lévai  G.,
Asymptotically vanishing PT-symmetric potentials and negative-mass Schrödinger equations,
Phys. Lett. A 373 (2009), 1921-1924,
arXiv:0903.5468.
 
 
 | 
 |