| 
 SIGMA 6 (2010), 018, 10 pages      arXiv:0910.2389     
https://doi.org/10.3842/SIGMA.2010.018 
Contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries 
The Integrability of New Two-Component KdV Equation
Ziemowit Popowicz
 Institute for Theoretical Physics, University of Wroclaw, Wroclaw 50204, Poland
 
 
Received October 19, 2009, in final form February 04, 2010;  Published online February 12, 2010 
Abstract
 
We consider  the bi-Hamiltonian  representation of the
two-component coupled KdV equations discovered by
Drinfel'd and Sokolov and rediscovered by Sakovich and Foursov.
Connection of this equation with the supersymmetric
Kadomtsev-Petviashvilli-Radul-Manin hierarchy is presented. For
this new supersymmetric equation the Lax representation and odd
Hamiltonian structure is given.
  
 Key words:
KdV equation; Lax representation; integrability; supersymmetry. 
pdf (241 kb)  
ps (152 kb)  
tex (15 kb)
 
 
References
 
- Svinopulov S.,
 Jordan algebras and integrable systems,
Funct. Anal.
Appl. 27 (1993), 257-265.
 
Svinopulov S.,
Jordan algebras and generalized Korteweg-de Vries equations,
Theoret. and Math.
Phys. 87 (1991), 611-620. 
- Gürses M., Karasu A.,
Integrable coupled KdV systems,
J. Math. Phys.
39 (1998), 2103-2111,
solv-int/9711015.
 
Gürses M., Karasu A.,
Integrable KdV systems: recursion operators of degree four,
Phys.
Lett. A 251 (1999), 247-249,
solv-int/9811013. 
- Antonowicz M., Fordy A.P.,
Coupled KdV equations with multi-Hamiltonian structures,
Phys.
D 28 (1987), 345-357.
 
- Ma W.-X.,
A class of coupled KdV systems and their bi-Hamiltonian formulation,
J. Phys.
A: Math. Gen. 31 (1998), 7585-7591,
solv-int/9803009.
 
- Foursov  M.V.,
Towards the complete classification of homogeneous two-component
integrable equations,
J. Math. Phys.
44 (2003), 3088-3096.
 
- Drinfel'd V.G., Sokolov V.V.,
New evolutionary equations possessing an (L,A)-pair,
Trudy Sem. S.L. Soboleva  (1981), no. 2, 5-9 (in Russian).
 
- Kupershmidt  B.A.,
Elements of superintegrable systems. Basic techniques and results,
Mathematics and its Applications, Vol. 34, D. Reidel Publishing
Co., Dordrecht, 1987.
 
- Gürses M., Oguz O.,
A super AKNS scheme,
Phys.
Lett. A 108 (1985), 437-440.
 
- Kulish P.P.,
Quantum osp-invariant nonlinear Schrödinger equation,
Lett. Math.
Phys. 10 (1985), 87-93.
 
- Manin Yu.I., Radul A.O.,
A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy,
Comm. Math.
Phys. 98 (1985), 65-77.
 
- Mathieu P.,
 Supersymmetric extension of the Korteweg-de Vries equation,
J. Math. Phys.
29 (1988), 2499-2506.
 
- Laberge C.A.,  Mathieu P.,
 N=2 superconformal algebra and integrable O(2) fermionic extensions
of the Korteweg-de Vries equation,
Phys.
Lett. B 215 (1988), 718-722.
 
- Labelle P., Mathieu P.,
 A new N=2 supersymmetric Korteweg-de Vries equation,
J. Math. Phys.
32 (1991), 923-927.
 
- Chaichian M., Lukierski J.,
 N=1 super-WZW and N=1,2,3,4 super-KdV models as D=2 current
superfield theories,
Phys.
Lett. B 212 (1988), 451-466.
 
- Oevel W., Popowicz Z.,
The bi-Hamiltonian structure of fully supersymmetric Korteweg-de
Vries systems,
Comm. Math.
Phys. 139 (1991), 441-460.
 
- Hirota R., Satsuma J.,
Soliton solutions of a coupled Korteweg-de Vries equation,
Phys.
Lett. A 85 (1981), 407-408.
 
- Ito M.,
Symmetries and conservation laws of a coupled nonlinear wave equation,
Phys.
Lett. A 91 (1982), 335-338.
 
- Sakovich S.Yu.,
Coupled KdV equations of Hirota-Satsuma type,
J. Nonlinear
Math. Phys.  6 (1999), 255-262,
solv-int/9901005.
 
Sakovich S.Yu.,
Addendum to: "Coupled KdV equations of Hirota-Satsuma type",
 J. Nonlinear
Math. Phys. 8 (2001), 311-312,
nlin.SI/0104072. 
- Dodd R., Fordy A.,
On the integrability of a system of coupled KdV equations,
Phys.
Lett. A 89 (1982), 168-170.
 
- Popowicz Z.,
The extended supersymmetrization of the multicomponent
Kadomtsev-Petviashvilli hierarchy,
J. Phys. A: Math. Gen. 19 (1996), 1281-1291.
 
- Blaszak  M.,
Multi-Hamiltonian theory of dynamical systems, Texts and
Monographs in Physics, Springer-Verlag, Berlin, 1998.
 
- Gürses M., Karasu A., Sokolov V.V.,
On construction of recursion operators from Lax representation,
J. Math. Phys.
40 (1999), 6473-6490,
solv-int/9909003.
 
- Popowicz Z.,
Odd Hamiltonian structure for supersymmetric Sawada-Kotera equation,
Phys.
Lett. A 373 (2009), 3315-3323,
arXiv:0902.2861.
 
- Tian K., Liu Q.P.,
A supersymmetric Sawada-Kotera equation,
Phys.
Lett. A 373 (2009), 1807-1810,
arXiv:0802.4011.
 
- Aratyn H., Nissimov E., Pacheva S.,
Supersymmetric Kadomtsev-Petviashvili hierarchy: "ghost"
symmetry structure, reductions, and Darboux-Bäcklund solutions,
J. Math. Phys.
40 (1999), 2922-2932,
solv-int/9801021.
 
Aratyn H., Nissimov E., Pacheva S.,
 Berezinian construction of super-solitons in supersymmetric
constrained KP hierarchy,
solv-int/9808004. 
 
 | 
 |