| 
 SIGMA 6 (2010), 077, 17 pages      arXiv:1003.1210     
https://doi.org/10.3842/SIGMA.2010.077 
Contribution to the Special Issue “Noncommutative Spaces and Fields” 
A Canonical Trace Associated with Certain Spectral Triples
Sylvie Paycha
 Laboratoire de Mathématiques, 63177 Aubière Cedex, France
 
 
Received March 11, 2010, in final form September 13, 2010;  Published online September 29, 2010 
Abstract
 
In the  abstract pseudodifferential setup of
Connes and Moscovici, we prove a general
formula for the discrepancies of zeta-regularised traces  associated with
certain spectral triples,  and we introduce a
canonical trace on operators, whose order lies outside (minus) the dimension
spectrum of the spectral triple.
  
 Key words:
spectral triples; zeta regularisation; noncommutative residue;  discrepancies. 
pdf (291 kb)  
ps (194 kb)  
tex (20 kb)
 
 
References
 
- Berline N., Getzler  E., Vergne M.,
Heat kernels and Dirac operators,
Springer-Verlag, Berlin, 2004.
 
- Connes A.,
Noncommutative geometry,
Academic Press, San Diego, CA, 1994.
 
- Cardona  A.,  Ducourtioux C.,  Magnot J.P., Paycha  S.,
Weighted traces on algebras of pseudo-differential operators and geometry on loop groups,
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 503-540,
math.OA/0001117.
 
- Connes A., Moscovici H.,
 The local index formula in noncommutative geometry,
 Geom. Funct. Anal. 5 (1995), 174-243.
 
- Dunford N.,  Schwartz J.T.,
Linear operators. Part III. Spectral operators,
John Wiley & Sons, Inc., New York, 1988.
 
- Higson N.,
The residue index theorem of Connes and Moscovici,
in Surveys in Noncommutative Geometry, Clay Math. Proc., Vol. 6, Amer. Math. Soc., Providence, RI, 2006, 71-126.
 
- Hörmander L.,
 The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis,
 Grundlehren der Mathematischen Wissenschaften, Vol. 256, Springer-Verlag, Berlin, 1983.
 
- Kassel Ch.,
   Le résidu non commutatif (d'après M. Wodzicki),
   Astérisque no. 177-178 (1989), exp. no. 708, 199-229.
 
- Kontsevich M., Vishik  S.,
Geometry of determinants of elliptic operators,
in Functional Analysis on the Eve of the 21st Century, Vol. 1 (New Brunswick, NJ, 1993), Progr. Math., Vol. 131, Birkhäuser Boston, Boston, MA, 1995, 173-197,
hep-th/9406140.
 
Kontsevich M., Vishik  S.,
Determinants of elliptic pseudo-differential operators, hep-th/9404046. 
- Lesch M.,
On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols,
Ann.  Global  Anal. Geom. 17 (1998),  151-187,
dg-ga/9708010.
 
- Melrose R.,  Nistor V.,
Homology of pseudo-differential operators. I. Manifolds with boundary,
funct-an/9606005.
 
- Maniccia L., Schrohe  E., Seiler J.,
 Uniqueness of the Kontsevich-Vishik trace,
Proc. Amer. Math. Soc. 136 (2008), 747-752,
math.FA/0702250.
 
- Okikiolu K.,
 The Campbell-Hausdorff theorem for elliptic operators and a related trace formula,
Duke Math. J.  79  (1995), 687-722.
 
- Paycha S.,
 Regularised integrals, sums and traces; an  analytic point of view, Monograph in preparation.
 
- Paycha S.,
Noncommutative Taylor expansions and  second quantised regularised traces,
in Combinatorics and Physics, Clay Math. Proc., to appear.
 
- Paycha  S., Scott  S.,
  A  Laurent expansion for  regularised integrals of holomorphic symbols,
Geom.  Funct. Anal. 17 (2007), 491-536,
math.AP/0506211.
 
- Seeley R.T.,
Complex powers of an elliptic operator,
in Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, 288-307.
 
- Shubin M.A.,
Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001.
 
- Taylor M.E.,  Pseudodifferential operators,
Princeton Mathematical Series, Vol. 34, Princeton University Press, Princeton, N.J., 1981.
 
- Trèves F.,
Introduction to pseudodifferential and Fourier integral operators, Vol. 1. Pseudodifferential operators,
 The University Series in Mathematics, Plenum Press, New York - London, 1980.
 
- Varilly J.C.,
An introduction to noncommutative geometry,
EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.
 
- Wodzicki M.,
  Spectral asymmetry and noncommutative residue,
  PhD Thesis, Steklov Mathematics Institute, Moscow, 1984 (in Russian).
 
- Wodzicki M.,
Noncommutative residue. I. Fundamentals, in  K-Theory, Arithmetic and Geometry (Moscow, 1984-1986), Lecture Notes in Math., Vol. 1289, Springer, Berlin, 1987, 320-399.
 
 
 | 
 |