| 
 SIGMA 6 (2010), 080, 9 pages      arXiv:1005.4603     
https://doi.org/10.3842/SIGMA.2010.080 
Contribution to the Proceedings of the International Workshop “Recent Advances in Quantum Integrable Systems” 
Quantum Integrable 1D anyonic  Models:  Construction through Braided Yang-Baxter Equation
Anjan Kundu
 Theory Group & CAMCS, Saha Institute of Nuclear Physics, Calcutta, India
 
 
Received May 25, 2010, in final form October 03, 2010;  Published online October 09, 2010 
Abstract
 
Applying braided Yang-Baxter equation
quantum integrable and   Bethe ansatz  solvable 1D anyonic lattice and field
models are constructed.
  Along with known    models we discover
  novel   lattice  anyonic and q-anyonic models as well as
    nonlinear Schrödinger  equation
(NLS) and the derivative NLS  quantum  field  models involving  anyonic
operators,
N-particle sectors of which yield the well known    anyon gases,
 interacting through δ and derivative δ-function
potentials.
  
 Key words:
nonultralocal model; braided YBE; quantum integrability; 1D anyonic and q-anyonic lattice models; anyonic NLS and derivative NLS field models; algebraic Bethe ansatz. 
pdf (203 kb)  
ps (139 kb)  
tex (14 kb)
 
 
References
 
- Wilczek F.,
Magnetic flux, angular momentum and statistics,
Phys. Rev. Lett. 48 (1982), 1144-1146.
 
- Camino F.F.,  Zhou W.,  Goldman V.J.,
Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics,
Phys. Rev. B 72 (2005), 075342, 8 pages,
cond-mat/0502406.
 
 Kim E.,  Lawer M.,  Vishweshwara S.,  Fradkin E.,
Signature of fractional statistics in noise experiments in quantum Hall fluids,
Phys. Rev. Lett.  95 (2005), 176402, 4 pages,
cond-mat/0507428. 
- Kitaev A.Yu.,
Fault-tolerant quantum computation by anyons,
Ann. Physics 303 (2003), 2-30,
quant-ph/9707021.
 
Kitaev A.Yu.,
Anyons in an exactly solved model and beyond,
Ann. Physics 321 (2006), 2-111,
cond-mat/0506438. 
Trebst S.,  Troyer M., Wang Z.,   Ludwig A.W.,
A short introduction to Fibonacci anyon models,
Progr. Theoret. Phys. Suppl. 176 (2008), 384-407,
arXiv:0902.3275. 
Nayak C.,  Simon S.H.,  Stern A.,  Freedman M.,  Das Sarma S.,
Non-abelian anyons and topological quantum  computation,
Rev. Modern Phys. 80 (2008), 1083-1159,
arXiv:0707.1889. 
- Pâtu O.I.,  Korepin V.E.,  Averin D.V.,
Correlation functions of one-dimensional Lieb-Liniger anyons,
J. Phys. A: Math. Theor. 40 (2007),  14963-14984,
arXiv:0707.4520.
 
- Kundu A.,
Exact solution of double δ-function Bose gas through an interacting anyon gas,
Phys. Rev. Lett. 83 (1999), 1275-1278,
hep-th/9811247.
 
- Batchelor  M.T.,  Guan X.-W.,  Kundu A.,
One-dimensional anyons with competing δ-function and derivative δ-function potentials,
J. Phys. A: Math. Theor. 41 (2008), 352002, 8 pages,
arXiv:0805.1770.
 
- Batchelor M.T.,  Foerster A.,  Guan X.-W.,  Links J., Zhou  H.-Q.,
 The quantum inverse scattering method with anyonic grading,
J. Phys. A: Math. Theor. 41 (2008), 465201, 13 pages,
arXiv:0807.3197.
 
- Batchelor M.T.,  Guan X.-W.,   Oelkers  N.,
One-dimensional interacting anyon gas: low energy properties and Haldane exclusion statistics,
Phys. Rev. Lett. 96 (2006), 210402, 4 pages,
cond-mat/0603643.
 
Girardeau M.D.,
Anyon-fermion mapping and applications to ultracold gasses in tight waveguides,
Phys. Rev. Lett. 97 (2006), 100402, 4 pages,
cond-mat/0604357. 
Averin  D.V.,  Nesteroff  J.A.,
Coulomb blockade of anyons in quantum antidots,
Phys. Rev. Lett. 99 (2007),  096801, 4 pages,
arXiv:0704.0439. 
Batchelor M.T.,  Guan X.-W.,  He  J.-S.,
The Bethe ansatz for one-dimensional interacting anyons,
J. Stat. Mech. Theory Exp. 2007 (2007), P03007, 19 pages,
cond-mat/0611450. 
Calabrese P.,  Mintchev M.,
Correlation functions of one-dimensionalanyonic fluids,
Phys. Rev. B 75 (2007), 233104, 4 pages,
cond-mat/0703117. 
Santachiara  R.,
Increasing of entangement entropy from pure to random quantum critical chains,
J. Stat. Mech. Theory Exp. 2006 (2006), L06002, 8 pages,
cond-mat/0602527. 
Pâtu O.I.,  Korepin V.E.,  Averin D.V.,
One-dimensional impenetrable anyons in thermal equillibrium. I. Anyonic generalizations of Lenard's formula,
J. Phys. A: Math. Theor.  41 (2008), 145006, 15 pages,
arXiv:0801.4397. 
Pâtu O.I.,  Korepin V.E.,  Averin D.V.,
One-dimensional impenetrable anyons in thermal equillibrium. II. Determinant represenation for the dynamic correlation functions,
J. Phys. A: Math. Theor.  41 (2008), 255205, 19 pages,
arXiv:0803.0750. 
del Campo A.,
Fermionization and bosonization of expanding one-dimensional anyonic fluids,
Phys. Rev. A 78 (2008),  045602, 4 pages,
arXiv:0805.3786. 
- Keilmann T.,  Lanzmich S.,  McCulloch I.,  Roncaglia   M.,
Statistically induced phase transitions: turning bosons smoothly via anyons into fermions,
arXiv:1009.2036.
 
- Lieb E.H., Liniger W.,
Exact analysis of an interacting Bose  gas. I. The general solution and the ground state,
Phys. Rev. 130 (1963), 1605-1616.
 
- Shnirman A.G.,  Malomed B.A.,  Ben-Jacob  E.,
Nonperturbative studies of a quantum higher order nonlinear Schrödinger model using the Bethe ansatz,
Phys. Rev. A 50 (1994), 3453-3463.
 
- Hlavatý L., Kundu A.,
Quantum integrability of non-ultralocal models through Baxterisation of  quantised  braided algebra,
Internat. J. Modern Phys. A 11 (1996), 2143-2165,
hep-th/9406215.
 
- Kundu A.,
Exact Bethe ansatz solution of non-ultralocal quantum mKdV model,
Modern Phys. Lett. A 10  (1995), 2955-2966,
hep-th/9510131.
 
- Faddeev L.D.,
Quantum completely integrable models in field theory,
in Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., Harwood Academic, Chur, 1980, Vol. 1, 107-155.
 
- Kundu A., Exact solution of anyonic NLS quantum field model, in  preparation.
 
Kundu A., Novel nonultralocal quantum group and exactly solvable anyonic DNLS
quantum field model, in  preparation. 
- Korepin V.E.,  Bogoliubov N.M.,  Izergin A.G.,
Quantum inverse scattering method and correlation functions,
Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993.
 
 
 | 
 |