| 
 SIGMA 6 (2010), 092, 14 pages      arXiv:1010.0361    
https://doi.org/10.3842/SIGMA.2010.092 
 
On Non-Point Invertible Transformations of Difference and Differential-Difference Equations
Sergey Ya. Startsev
 Ufa Institute of Mathematics, Russian Academy of Sciences, 112 Chernyshevsky Str., Ufa, 450077, Russia
 
 
Received October 04, 2010, in final form December 03, 2010;  Published online December 11, 2010 
Abstract
 
Non-point invertible transformations are completely described for difference equations on the quad-graph and for their differential-difference analogues. As an illustration, these transformations are used to construct new examples of integrable equations and autotransformations of the Hietarinta equation.
  
 Key words:
non-point transformation; Darboux integrability; discrete Liouville equation; higher symmetry. 
pdf (262 kb)  
ps (157 kb)  
tex (14 kb)
 
 
References
 
- Adler V.E., Bobenko A.I., Suris Yu.B.,
Classification of integrable equation on quad-graphs. The consistency approach,
Comm. Math. Phys. 233 (2003), 513-543,
nlin.SI/0202024.
 
- Adler V.E., Startsev S.Ya.,
Discrete analogues of the Liouville equation,
Teoret. Mat. Fiz. 121  (1999), 271-284  (English transl.: Theoret. and Math. Phys. 121  (1999), 1484-1495),
solv-int/9902016.
 
- Calogero F.,
Why are certain nonlinear PDEs both widely applicable and integrable?, in  What is integrability?, Editor V.E. Zakharov,
Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 1-62.
 
- Habibullin I.T.,
Characteristic algebras of fully discrete hyperbolic type equations,
SIGMA 1 (2005), 023, 9 pages,
nlin.SI/0506027.
 
- Habibullin I.T., Zheltukhina N., Pekcan A.,
Complete list of Darboux integrable chains of the form t1x=tx+d(t,t1),
J. Math. Phys. 50 (2009), 102710, 23 pages,
arXiv:0907.3785.
 
- Hietarinta J.,
A new two-dimensional lattice model that is 'consistent around a cube',
J. Phys. A: Math. Gen. 37  (2004), L67-L73,
nlin.SI/0311034.
 
- Hirota R.,
 Nonlinear partial difference equations. III. Discrete sine-Gordon equation,
J. Phys. Soc. Japan  43 (1977), 2079-2086.
 
- Hirota R.,
Nonlinear partial difference equations. V. Nonlinear equations reducible to linear equations,
J. Phys. Soc. Japan 46 (1979), 312-319.
 
- Hirota R.,
Discrete two-dimensional Toda molecule equation,
J. Phys. Soc. Japan  56 (1987), 4285-4288.
 
- Levi R., Yamilov  R.I.,
The generalized symmetry method for discrete equation,
J. Phys. A: Math. Theor. 42  (2009), 454012, 18 pages,
arXiv:0902.4421.
 
- Mikhailov A.V., Wang J.P., Xenitidis P.D.,
Recursion operators, conservation laws and integrability conditions for difference equations,
arXiv:1004.5346.
 
- Nijhoff W.F., Quispel G.R.W., Capel H.W.,
Linearization of nonlinear differential-difference equations,
Phys. Lett. A 95  (1983), 273-276.
 
- Nijhoff F.W., Capel  H.W.,
The discrete Korteweg-de Vries equation,
Acta Appl. Math. 39 (1995), 133-158.
 
- Orfanidis S.J.,
Discrete sine-Gordon equations,
Phys. Rev. D  18  (1978), 3822-3827.
 
- Ramani A., Joshi N., Grammaticos B., Tamizhmani N.,
 Deconstructing an integrable lattice equation,
J. Phys. A: Math. Gen. 39  (2006), L145-L149.
 
- Sokolov V.V., Svinolupov S.I.,
On nonclassical invertible transformation of hyperbolic equations,
European J. Appl. Math. 6 (1995), 145-156.
 
- Yamilov R.I.,
Invertible changes of variables generated by Bäcklund transformations,
Teoret. Mat. Fiz. 85 (1990), 368-375  (English transl.: Theoret. and Math. Phys. 85 (1991), 1269-1275).
 
- Yamilov R.I.,
Construction scheme for discrete Miura transformation,
J. Phys. A: Math. Gen. 27 (1994), 6839-6851.
 
- Zhiber A.V., Sokolov V.V., Startsev S.Ya.,
On nonlinear Darboux-integrable hyperbolic equations,
Dokl. Ross. Akad. Nauk 343  (1995), 746-748  (English transl.: Doklady Math. 52 (1996), 128-130).
 
- Zhiber A.V., Sokolov V.V.,
Exactly integrable hyperbolic equations of Liouville type,
Usp. Mat. Nauk 56 (2001), no. 1, 63-106  (English transl.: Russ. Math. Surv. 56  (2001), no. 1, 61-101).
 
 
 | 
 |