| 
 SIGMA 7 (2011), 011, 11 pages      arXiv:1008.4836     
https://doi.org/10.3842/SIGMA.2011.011 
Entanglement of  Grassmannian  Coherent States for  Multi-Partite n-Level Systems
Ghader Najarbashi and Yusef Maleki
 Department of Physics, University of Mohaghegh Ardabili, Ardabil, 179, Iran
 
 
Received September 05, 2010, in final form January 19, 2011;  Published online January 24, 2011 
Abstract
 
In this paper, we investigate the entanglement of multi-partite
Grassmannian coherent states (GCSs)  described by  Grassmann
numbers for n>2  degree of nilpotency. Choosing an appropriate weight function, we show that it is
possible to construct some well-known entangled pure states,
consisting of GHZ, W, Bell, cluster type and
bi-separable  states, which are obtained by integrating over tensor
product of GCSs. It is shown that for three level systems, the
Grassmann creation and
 annihilation operators
b and  b† together with bz form a closed deformed
algebra, i.e.,
SUq(2)  with q=e2πi/3, which is useful to construct
entangled qutrit-states. The same argument  holds for three level
squeezed states. Moreover combining the
Grassmann and bosonic coherent states we
 construct maximal entangled super coherent states.
 
 Key words:
entanglement; Grassmannian variables; coherent states. 
pdf (354 Kb)  
tex (14 Kb)
 
 
References
 
- Nielsen M.A., Chuang I.L.,
Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
 
- Petz D.,
Quantum information theory and quantum statistics, Springer-Verlag, Berlin, 2008.
 
- van Enk  S.J.,
Decoherence of multidimensional entangled coherent states,
Phys. Rev. A 72 (2005), 022308, 6 pages,
quant-ph/0503207.
 
- van Enk  S.J., Hirota O.,
 Entangled coherent states: teleportation and decoherence,
Phys. Rev. A 64 (2001), 022313, 6 pages,
quant-ph/0012086.
 
- Fujii K.,
Introduction to coherent states and quantum information theory,
quant-ph/0112090.
 
- Najarbashi G.,  Maleki Y.,
Maximal entanglement of two-qubit states constructed by linearly independent coherent states,
arXiv:1007.1387.
 
- Fu H.,  Wang X., Solomon A.I.,
Maximal entanglement of nonorthogonal states: classification,
Phys. Lett. A 291  (2001), 73-76,
quant-ph/0105099.
 
- Wang X., Sanders B.C.,
Multipartite entangled coherent states,
Phys. Rev. A 65  (2001), 012303, 7 pages,
quant-ph/0104011.
 
- Wang X.,
Bipartite entangled non-orthogonal states,
J. Phys. A: Math. Gen. 35 (2002), 165-173,
quant-ph/0102011.
 
- Wang X., Sanders B.C., Pan S.-H.,
Entangled coherent states for systems with SU(2) and SU(1,1) symmetries,
J. Phys. A: Math. Gen. 33 (2000), 7451-7467,
quant-ph/0001073.
 
- Wang X.,
Quantum teleportation of entangled coherent states,
Phys. Rev. A 64 (2001), 022302, 4 pages,
quant-ph/0102048.
 
- Majid S., Rodríguez-Plaza M.J.,
Random walk and the heat equation on superspace and anyspace,
J. Math. Phys. 35 (1994), 3753-3760.
 
- Cabra D.C., Moreno E.F., Tanasa A.,
Para-Grassmann variables and coherent states,
SIGMA  2 (2006),  087, 8 pages,
hep-th/0609217.
 
- Najarbashi G., Fasihi M.A., Fakhri H.,
 Generalized Grassmannian coherent states for pseudo-Hermitian n-level systems,
J. Phys. A: Math. Theor. 43 (2010),  325301, 10 pages,
arXiv:1007.1392.
 
- Borsten L., Dahanayake D., Duff M.J., Rubens W.,
Superqubits,
Phys. Rev. D 81 (2010), 105023, 16 pages,
arXiv:0908.0706.
 
- Khanna F.C., Malbouisson J.M.C., Santana A.E., Santos E.S.,
 Maximum entanglement in squeezed boson and fermion states,
Phys. Rev. A 76  (2007), 022109, 5 pages,
arXiv:0709.0716.
 
- Castellani L., Grassi P A., Sommovigo L., Quantum computing with superqubits,
arXiv:1001.3753.
 
- Najarbashi  G., Fasihi M.A., Mirmasoudi F., Mirzaei S.,
Entanglement of fermionic coherent states for pseudo Hermitian Hamiltonian, Poster at International Iran Conference on Quantum Information-2010 (2010, Kish Island, Iran).
 
- Najarbashi G., Maleki Y.,
Entanglement in multi-qubit pure fermionic coherent states,
arXiv:1004.3703.
 
- Cahill K.E., Glauber R.J.,
Density operators for fermions,
Phys. Rev. A 59 (1999), 1538-1555,
physics/9808029.
 
- Kerner R.,
Z3-graded algebras and the cubic root of the supersymmetry translations,
J. Math. Phys. 33 (1992), 403-411.
 
- Filippov A.T., Isaev A.P., Kurdikov A.B.,
Para-Grassmann differential calculus,
Theoret. and Math. Phys. 94 (1993), 150-165,
hep-th/9210075.
 
- Isaev A.P.,
Para-Grassmann integral, discrete systems and quantum groups,
Internat. J. Modern Phys. A 12 (1997), 201-206,
q-alg/9609030.
 
- Cugliandolo L.F., Lozano G.S., Moreno E.F., Schaposnik F.A.,
A note on Gaussian integrals over para-Grassmann variables,
Internat. J. Modern Phys. A 19 (2004), 1705-1714,
hep-th/0209172.
 
- Ilinski K.N., Kalinin G.V., Stepanenko A.S.,
q-functional Wick's theorems for particles with exotic statistics,
J. Phys. A: Math. Gen. 30 (1997), 5299-5310,
hep-th/9704181.
 
- Barnum H., Knill E., Ortiz G., Somma R., Viola L.,
A subsystem-independent generalization of entanglement,
Phys. Rev. Lett. 92 (2004), 107902, 4 pages,
quant-ph/0305023.
 
- Munhoz P.P., Semião F.L., Vidiella-Barranco A.,
Cluster-type entangled coherent states,
Phys. Lett. A 372 (2008), 3580-3585,
arXiv:0705.1549.
 
- Fujii K.,
A relation between coherent states and generalized Bell states,
quant-ph/0105077.
 
- Gerry C.C., Peart M.,
Spin squeezing and entanglement via hole-burning in atomic coherent states,
Phys. Lett. A 372 (2008),  6480-6483.
 
- Sun C., Xue K., Wang G., Wu C.,
A study on the relations between the topological parameter and entanglement,
arXiv:1001.4587.
 
- Ichikawa T., Sasaki T., Tsutsui I., Yonezawa N.,
 Exchange symmetry and multipartite entanglement,
Phys. Rev. A 78 (2008), 052105, 8 pages,
arXiv:0805.3625.
 
- Mandilara A., Akulin V.M., Smilga A.V., Viola L.,
Quantum entanglement via nilpotent polynomials,
Phys. Rev. A 74 (2006), 022331, 34 pages,
quant-ph/0508234.
 
 
 | 
 |