| 
 SIGMA 7 (2011), 071, 20 pages      arXiv:1106.5017     
https://doi.org/10.3842/SIGMA.2011.071 
Contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S4)” 
From Quantum AN (Calogero) to H4 (Rational) Model
Alexander V. Turbiner
 Instituto de Ciencias Nucleares, Universidad Nacional
Autónoma de México,  Apartado Postal 70-543, 04510 México, D.F., Mexico
 
 
Received February 28, 2011, in final form July 12, 2011;  Published online July 18, 2011 
Abstract
 
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit  (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits).
  
 Key words:
(quasi)-exact-solvability; rational models; algebraic forms; Coxeter (Weyl) invariants, hidden algebra. 
pdf (463 kb)  
tex (37 kb)
 
 
References
 
- Evans N.W.,
Group theory of the Smorodinsky-Winternitz system,
J. Math. Phys. 32 (1991), 3369-3375.
 
- Turbiner  A.V.,
Quasi-exactly-solvable problems and the sl(2) group,
Comm. Math. Phys. 118 (1988),  467-474.
 
- Calogero  F.,
Solution of a three-body problem in one dimension,
J. Math. Phys. 10 (1969),  2191-2196.
 
Calogero  F.,
Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials,
J. Math. Phys. 12 (1971), 419-436. 
- Rühl W., Turbiner A.,
Exact solvability of the Calogero and Sutherland models,
Modern Phys. Lett. A 10 (1995), 2213-2221,
hep-th/9506105.
 
- Minzoni  A., Rosenbaum M., Turbiner A.,
Quasi-exactly-solvable many-body problems,
Modern Phys. Lett. A 11 (1996), 1977-1984,
hep-th/9606092.
 
- Olshanetsky  M.A., Perelomov A.M.,
Quantum integrable systems related to Lie algebras,
Phys. Rep. 94 (1983), 313-404.
 
- Oshima T.,
Completely integrable systems associated with classical root systems,
SIGMA 3 (2007), 061, 50 pages,
math-ph/0502028.
 
- Brink L., Turbiner A., Wyllard N.,
Hidden algebras of the (super) Calogero and Sutherland models,
J. Math. Phys. 39 (1998), 1285-1315,
hep-th/9705219.
 
- Wolfes J.,
On the three-body linear problem with three-body interaction,
J. Math. Phys. 15 (1974), 1420-1424.
 
- Lie  S.,
Gruppenregister, Vol. 5, B.G. Teubner, Leipzig, 1924, 767-773.
 
- González-López A., Kamran  N.,  Olver P.J.,
Quasi-exactly-solvable Lie algebras of the first order differential operators in two complex variables,
J. Phys. A: Math. Gen. 24 (1991), 3995-4008.
 
González-López A., Kamran  N.,  Olver P.J.,
Lie algebras of differential operators in two complex variables,
Amer. J. Math. 114 (1992), 1163-1185. 
- Boreskov K.G.,Turbiner A.V., Lopez Vieyra J.C.,
Solvability of the Hamiltonians related to exceptional root spaces: rational case,
Comm. Math. Phys. 260 (2005), 17-44,
hep-th/0407204.
 
- Tremblay F., Turbiner A.V., Winternitz P.,
An infinite family of solvable and integrable quantum systems on a plane,
J. Phys. A: Math. Theor. 42 (2009), 242001, 10 pages,
arXiv:0904.0738.
 
- García  M.A.G., Turbiner A.V.,
The quantum H3 integrable system,
Internat. J. Modern Phys. A 25 (2010), 5567-5594,
arXiv:1007.0737.
 
- García  M.A.G., Turbiner A.V.,
The quantum H4 integrable system,
Modern Phys. Lett. A 26 (2011), 433-447,
arXiv:1011.2127.
 
- García  M.A.G.
Los Sistemas Integrables H3 y H4,
PhD Thesis, UNAM, 2011 (in Spanish).
 
 
 | 
 |