| 
 SIGMA 7 (2011), 090, 11 pages       arXiv:0812.1749      
https://doi.org/10.3842/SIGMA.2011.090 
Holomorphic Parabolic Geometries and Calabi-Yau Manifolds
Benjamin McKay
 School of Mathematical Sciences, University College Cork, Cork, Ireland
 
 
Received May 25, 2011, in final form September 15, 2011;  Published online September 20, 2011 
Abstract
 
We prove that the only complex parabolic geometries on
Calabi-Yau manifolds are the homogeneous geometries on complex
tori. We also classify the complex parabolic geometries on
homogeneous compact Kähler manifolds. 
 Key words:
parabolic geometry; Calabi-Yau manifold. 
pdf (340 Kb)  
tex (18 Kb)
 
 
References
 
- Atiyah M.F.,
Complex analytic connections in fibre bundles,
Trans. Amer. Math. Soc. 85 (1957), 181-207.
 
- Berger M., Lascoux A.,
Variétés Kähleriennes compactes,
Lecture Notes in Mathematics, Vol. 154, Springer-Verlag, Berlin, 1970.
 
- Biswas I.,  McKay B.,
 Holomorphic Cartan geometries and Calabi-Yau manifolds,
J. Geom. Phys. 60 (2010), 661-663,
arXiv:0812.3978.
 
- Biswas I.,  McKay B.,
Holomorphic Cartan geometries and rational curves,
arXiv:1005.1472.
 
- Biswas I.,  McKay B.,
Holomorphic Cartan geometries, Calabi-Yau manifolds and rational curves,
Differential Geom. Appl. 28 (2010), 102-106,
arXiv:1009.5801.
 
- Borel A., Remmert R.,
Über kompakte homogene Kählersche Mannigfaltigkeiten,
Math. Ann. 145  (1961/1962), 429-439.
 
- Cap A., Slovák J.,
Parabolic geometries. I. Background and general theory,
Mathematical Surveys and Monographs, Vol. 154,
American Mathematical Society, Providence, RI, 2009.
 
- Dumitrescu S.,
Structures géométriques holomorphes sur les variétés   complexes compactes,
Ann. Sci. École Norm. Sup. (4) 34 (2001), 557-571.
 
- Dumitrescu S.,
Connexions affines et projectives sur les surfaces complexes   compactes,
Math. Z. 264 (2010), 301-316,
arXiv:0805.2816.
 
- Dumitrescu S.,
Killing fields of holomorphic Cartan geometries,
Monatsh. Math. 161 (2010), 145-154,
arXiv:0902.2193.
 
- Fulton W.,  Harris J.,
  Representation theory. A first course,
  Graduate Texts in   Mathematics, Vol. 129,
 Springer-Verlag, New York, 1991.
 
- Gunning R.C.,
On uniformization of complex manifolds: the role of connections,
Mathematical Notes, Vol. 22,
Princeton University Press, Princeton, N.J., 1978.
 
- Hammerl M.,
Homogeneous Cartan geometries,
Arch. Math. (Brno) 43 (2007), 431-442,
math.DG/0703627.
 
- Igusa J.-I.,
 On the structure of a certain class of Kaehler varieties,
Amer. J. Math.  76 (1954), 669-678.
 
- Inoue M.,  Kobayashi S.,  Ochiai T.,
 Holomorphic affine connections on compact complex surfaces,
 J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 247-264.
 
- Jahnke P., Radloff I.,
 Threefolds with holomorphic normal projective connections,
Math. Ann. 329 (2004), 379-400,
math.AG/0210117.
 
- Jahnke P., Radloff I.,
Projective threefolds with holomorphic conformal structure,
Internat. J. Math. 16 (2005), 595-607,
math.AG/0406113.
 
- Klingler B.,
Structures affines et projectives sur les surfaces complexes,
Ann. Inst. Fourier (Grenoble) 48 (1998), 441-477.
 
- Klingler B.,
Un théorème de rigidité non-métrique pour les variétés localement symétriques hermitiennes,
Comment. Math. Helv. 76 (2001), 200-217.
 
- Knapp A.W.,
Lie groups beyond an introduction, 2nd ed.,
 Progress   in Mathematics, Vol. 140,
  Birkhäuser Boston Inc., Boston, MA, 2002.
 
- Kobayashi S.,  Horst C.,
 Topics in complex differential geometry,
in  Complex Differential Geometry,   DMV Sem., Vol. 3,
 Birkhäuser, Basel, 1983, 4-66.
 
- Kobayashi S., Ochiai T.,
Holomorphic projective structures on compact complex surfaces,
Math. Ann. 249 (1980), 75-94.
 
- Kobayashi S., Ochiai T.,
 Holomorphic projective structures on compact complex surfaces. II,
Math. Ann. 255 (1981), 519-521.
 
- Kobayashi S., Ochiai T.,
 Holomorphic structures modeled after compact Hermitian symmetric spaces,
in Manifolds and Lie Groups (Notre Dame, Ind., 1980),
 Progr. Math., Vol. 14,  Birkhäuser, Boston, Mass., 1981, 207-222.
 
- Kobayashi S., Ochiai T.,
 Holomorphic structures modeled after hyperquadrics,
Tôhoku Math. J. (2) 34 (1982), 587-629.
 
- McKay B.,
 Characteristic forms of complex Cartan geometries,
Adv. Geom. 11 (2011), 139-168,
arXiv:0704.2555.
 
- McKay B.,
Holomorphic Cartan geometries on uniruled surfaces,
C. R. Acad. Sci. Paris 349 (2011), 893-896,
arXiv:1105.4732.
 
- McKay B.,   Pokrovskiy A.,
 Locally homogeneous geometric structures on Hopf surfaces,
Indiana Univ. Math. J. 59 (2010), 1491-1540,
arXiv:0910.0369.
 
- Mumford D., Fogarty J.,  Kirwan F.,
 Geometric invariant theory,  3rd ed., Ergebnisse der
  Mathematik und ihrer Grenzgebiete (2), Vol. 34,
 Springer-Verlag, Berlin,   1994.
 
- Procesi C.,
Lie groups. An approach through invariants and representations, Universitext, Springer, New York, 2007.
 
- Serre J.-P.,
 Complex semisimple Lie algebras,
Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001.
 
- Sharpe R.W.,
Differential geometry. Cartan's generalization of Klein's Erlangen program,
Graduate Texts in Mathematics, Vol. 166,
 Springer-Verlag, New York, 1997.
 
- Wang H.-C.,
 Closed manifolds with homogeneous complex structure,
Amer. J. Math. 76 (1954), 1-32.
 
- Yau S.T.,
 Calabi's conjecture and some new results in algebraic geometry,
 Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1798-1799.
 
 
 | 
 |