| 
 SIGMA 7 (2011), 115, 11 pages      arXiv:1105.1998     
https://doi.org/10.3842/SIGMA.2011.115
  
A Connection Formula of the Hahn-Exton q-Bessel Function
Takeshi Morita
 Graduate School of Information Science and Technology, Osaka University, 1-1  Machikaneyama-machi, Toyonaka, 560-0043, Japan
 
 
Received May 11, 2011, in final form December 14, 2011; Published online December 16, 2011 
Abstract
 
We show a connection formula of the Hahn-Exton q-Bessel function around the origin and the infinity. We introduce the q-Borel transformation and the q-Laplace transformation following C. Zhang to obtain the connection formula. We consider the limit p→1− of the connection formula.
  
 Key words:
Hahn-Exton q-Bessel function; q-Borel transformation; connection problems. 
pdf (323 kb)  
tex (10 kb)
 
 
References
 
- Birkhoff G.D.,
The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations,
Proc. Amer. Acad. 49 (1913), 521-568.
 
- Gasper G.,  Rahman M.,
Basic hypergeometric series, 2nd ed.,
Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
 
- Hahn W.,
Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hypergeometrischen q-Differenzengleichung.
Das q-Analogon der Laplace-Transformation,
Math. Nachr. 2 (1949), 340-379.
 
- Olver F.W.J.,
Asymptotics and special functions,
Computer Science and Applied Mathematics,  Academic Press, New York - London, 1974.
 
- Swarttouw R.F., Meijer H.G.,
A q-analogue of the Wronskian and a second solution of the Hahn-Exton q-Bessel difference equation,
Proc. Amer. Math. Soc. 129 (1994),   855-864.
 
- Watson G.N.,
The continuation of functions defined by generalized hypergeometric series,
Trans. Camb. Phil. Soc. 21 (1910),  281-299.
 
- Zhang C.,
Remarks on some basic hypergeometric series,
in Theory and Applications of Special Functions,
Dev. Math., Vol. 13, Springer, New York, 2005, 479-491.
 
- Zhang C.,
Sur les fonctions q-Bessel de Jackson,
J. Approx. Theory 122  (2003),  208-223.
 
- Zhang C.,
Une sommation discrè pour des équations aux q-différences linéaires et à  coefficients, analytiques: théorie générale et exemples,
in Differential Equations and Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309-329.
 
 
 | 
 |