| 
 SIGMA 8 (2012), 006, 14 pages      arXiv:1106.1512     
https://doi.org/10.3842/SIGMA.2012.006 
On Lie Algebroids and Poisson Algebras
Dennise García-Beltrán a, José A. Vallejo a and Yuriĭ Vorobjev b
 a) Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, México
 b) Departamento de Matemáticas, Universidad de Sonora, México
 
 
Received June 08, 2011, in final form February 01, 2012; Published online February 10, 2012 
Abstract
 
We introduce and study a class of Lie algebroids associated to
faithful modules which is motivated by the notion of cotangent Lie algebroids of
Poisson manifolds. We also give a classification of transitive Lie algebroids and
describe Poisson algebras by using the notions of algebroid and Lie connections.
  
 Key words:
transitive Lie algebroids; Lie-Rinehart algebras; Poisson brackets; algebraic connections. 
pdf (375 kb)  
tex (20 kb)
 
 
References
 
- Abraham R., Marsden J.E., Kelley A., Kolmogorov A.N., Foundations of mechanics,
  W.A. Benjamin, Inc., New York - Amsterdam, 1967.
 
- Atkin C.J., Grabowski J., Homomorphisms of the Lie algebras associated with a
  symplectic manifold, Compositio Math. 76 (1990), 315-349.
 
- Beltrán J.V., Monterde J., Graded Poisson structures on the algebra of
  differential forms, Comment. Math. Helv. 70 (1995),
  383-402.
 
- Connes A., Noncommutative differential geometry, Inst. Hautes Études
  Sci. Publ. Math.  (1985), 257-360.
 
- Cuntz J., Quillen D., Algebra extensions and nonsingularity, J. Amer.
  Math. Soc. 8 (1995), 251-289.
 
- Dubois-Violette M., Michor P.W.,
Dérivations et calcul différentiel non commutatif. II,
C. R. Acad. Sci. Paris Sér. I Math. 319
  (1994), 927-931.
 
- Dufour J.P., Zung N.T., Poisson structures and their normal forms,
  Progress in Mathematics, Vol. 242, Birkhäuser Verlag, Basel, 2005.
 
- Grabowski J., Quasi-derivations and QD-algebroids,
Rep. Math. Phys.
  52 (2003), 445-451, math.DG/0301234.
 
- Herz J.C., Pseudo-algèbres de Lie. I, C. R. Acad. Sci. Paris
  236 (1953), 1935-1937.
 
- Herz J.C., Pseudo-algèbres de Lie. II, C. R. Acad. Sci. Paris
  236 (1953), 2289-2291.
 
- Huebschmann J., Poisson cohomology and quantization,
J. Reine Angew.  Math. 408 (1990), 57-113.
 
- Huebschmann J., Lie-Rinehart algebras, Gerstenhaber algebras and
  Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble)
  48 (1998), 425-440, dg-ga/9704005.
 
- Huebschmann J., Extensions of Lie-Rinehart algebras and the
  Chern-Weil construction, in Higher Homotopy Structures in Topology and
  Mathematical Physics (Poughkeepsie, NY, 1996), Contemp. Math.,
  Vol. 227, Amer. Math. Soc., Providence, RI, 1999, 145-176,
  dg-ga/9706002.
 
- Katz N.M., Nilpotent connections and the monodromy theorem: applications of a
  result of Turrittin, Inst. Hautes Études Sci. Publ. Math.
  (1970), no. 39, 175-232.
 
- Kolár I., Michor P.W., Slovák J., Natural operations in
  differential geometry, Springer-Verlag, Berlin, 1993.
 
- Kosmann-Schwarzbach Y., Mackenzie K.C.H., Differential operators and actions of
  Lie algebroids, in Quantization, Poisson Brackets and Beyond
  (Manchester, 2001), Contemp. Math., Vol. 315, Amer. Math. Soc.,
  Providence, RI, 2002, 213-233, math.DG/0209337.
 
- Kosmann-Schwarzbach Y., Magri F., Poisson-Nijenhuis structures, Ann.
  Inst. H. Poincaré Phys. Théor. 53 (1990), 35-81.
 
- Koszul J.L., Crochet de Schouten-Nijenhuis et cohomologie,
  Astérisque  (1985), Numero Hors Serie, 257-271.
 
- Kubarski J., The Chern-Weil homomorphism of regular Lie algebroids,
Publications du Département de Mathématiques, Nouvelle Série A, Univ.
  Claude-Bernard, Lyon, 1991, 1-70.
 
- Mackenzie K.C.H., Lie algebroids and Lie pseudoalgebras,
Bull. London Math. Soc. 27 (1995), 97-147.
 
- Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids,
  London Mathematical Society Lecture Note Series, Vol. 213, Cambridge
  University Press, Cambridge, 2005.
 
- Rinehart G.S., Differential forms on general commutative algebras,
Trans. Amer. Math. Soc. 108 (1963), 195-222.
 
- Vorobiev Yu., On Poisson realizations of transitive Lie algebroids,
J. Nonlinear Math. Phys. 11 (2004), suppl., 43-48.
 
- Vorobjev Yu., Coupling tensors and Poisson geometry near a single symplectic
  leaf, in Lie Algebroids and Related Topics in Differential Geometry
  (Warsaw, 2000), Banach Center Publ., Vol. 54, Polish Acad. Sci.
  Inst. Math., Warsaw, 2001, 249-274, math.SP/0008162.
 
 
 | 
 |