| 
 SIGMA 8 (2012), 023, 25 pages      arXiv:1111.6750     
https://doi.org/10.3842/SIGMA.2012.023 
Classification of Traces and Associated Determinants on Odd-Class Operators in Odd Dimensions
Carolina Neira Jiménez a  and Marie Françoise Ouedraogo b
 a) Fakultät für  Mathematik, Universität Regensburg, 93040 Regensburg, Germany
 b) Départment de Mathématiques, Université de Ouagadougou, 03 BP 7021, Burkina Faso
 
 
Received November 30, 2011, in final form April 11, 2012; Published online April 21, 2012 
Abstract
 
To supplement the already known classification of traces on classical pseudodifferential operators, we present a classification of traces on the algebras of odd-class pseudodifferential operators of non-positive order acting on smooth functions on a closed odd-dimensional manifold. By means of the one to one correspondence between continuous traces on Lie algebras and determinants on the associated regular Lie groups, we give a classification of determinants on the group associated to the algebra of odd-class pseudodifferential operators with fixed non-positive order. At the end we discuss two possible ways to extend the definition of a determinant outside a neighborhood of the identity on the Lie group associated to the algebra of odd-class pseudodifferential operators of order zero.
  
 Key words:
pseudodifferential operators; odd-class; trace; determinant; logarithm; regular Lie group. 
pdf (513 kb)  
tex (31 kb)
 
 
References
 
- Braverman M., Symmetrized trace and symmetrized determinant of odd class
  pseudo-differential operators, J. Geom. Phys. 59 (2009),
  459-474, math-ph/0702060.
 
- De la Harpe P., Skandalis G., Déterminant associé à une trace sur une
  algébre de Banach, Ann. Inst. Fourier (Grenoble) 34
  (1984), 241-260.
 
- Ducourtioux C., Weighted traces on pseudodifferential operators and associated
  determinants, Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand,
  2001.
 
- Fedosov B.V., Golse F., Leichtnam E., Schrohe E., The noncommutative residue
  for manifolds with boundary, J. Funct. Anal. 142 (1996),
  1-31.
 
- Grubb G., A resolvent approach to traces and zeta Laurent expansions, in
  Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds,
  Contemp. Math., Vol. 366, Amer. Math. Soc., Providence, RI, 2005,
  67-93, math.AP/0311081.
 
- Guillemin V., A new proof of Weyl's formula on the asymptotic distribution of
  eigenvalues, Adv. Math. 55 (1985), 131-160.
 
- Guillemin V., Residue traces for certain algebras of Fourier integral
  operators, J. Funct. Anal. 115 (1993), 391-417.
 
- Kontsevich M., Vishik S., Determinants of elliptic pseudodifferential
  operators, hep-th/9404046.
 
- Kriegl A., Michor P.W., The convenient setting of global analysis,
  Mathematical Surveys and Monographs, Vol. 53, American Mathematical
  Society, Providence, RI, 1997.
 
- Lesch M., On the noncommutative residue for pseudodifferential operators with
  log-polyhomogeneous symbols, Ann. Global Anal. Geom. 17
  (1999), 151-187, dg-ga/9708010.
 
- Lesch M., Pseudodifferential operators and regularized traces, in Motives,
  Quantum Field Theory, and Pseudodifferential Operators, Clay Math.
  Proc., Vol. 12, Amer. Math. Soc., Providence, RI, 2010, 37-72,
  arXiv:0901.1689.
 
- Lesch M., Neira Jiménez C., Classification of traces and hypertraces on
  spaces of classical pseudodifferential operators, arXiv:1011.3238.
 
- Lescure J.M., Paycha S., Uniqueness of multiplicative determinants on elliptic
  pseudodifferential operators, Proc. Lond. Math. Soc. (3) 94
  (2007), 772-812.
 
- Maniccia L., Schrohe E., Seiler J., Uniqueness of the Kontsevich-Vishik
  trace, Proc. Amer. Math. Soc. 136 (2008), 747-752,
  math.FA/0702250.
 
- Mickelsson J., Current algebras and groups, Plenum Monographs in Nonlinear
  Physics, Plenum Press, New York, 1989.
 
- Milnor J., Remarks on infinite-dimensional Lie groups, in Relativity, Groups
  and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984,
  1007-1057.
 
- Neira Jiménez C., Cohomology of classes of symbols and classification of
  traces on corresponding classes of operators with non positive order, Ph.D.
  thesis, Universität Bonn, 2009, available at
  http://hss.ulb.uni-bonn.de/2010/2214/2214.htm.
 
- Okikiolu K., The Campbell-Hausdorff theorem for elliptic operators and a
  related trace formula, Duke Math. J. 79 (1995), 687-722.
 
- Omori H., Maeda Y., Yoshioka A., Kobayashi O., On regular Fréchet-Lie
  groups. IV. Definition and fundamental theorems, Tokyo J. Math.
  5 (1982), 365-398.
 
- Ouedraogo M.F., A symmetrized canonical determinant on odd-class
  pseudodifferential operators, in Geometric and Topological Methods for
  Quantum Field Theory, Cambridge Univ. Press, Cambridge, 2010, 381-393.
 
- Ouedraogo M.F., Extension of the canonical trace and associated determinants,
  Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, 2009.
 
- Paycha S., The noncommutative residue and canonical trace in the light of
  Stokes' and continuity properties, arXiv:0706.2552.
 
- Paycha S., Rosenberg S., Traces and characteristic classes on loop spaces, in
  Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor.
  Phys., Vol. 5, de Gruyter, Berlin, 2004, 185-212.
 
- Paycha S., Scott S., A Laurent expansion for regularized integrals of
  holomorphic symbols, Geom. Funct. Anal. 17 (2007),
  491-536, math.AP/0506211.
 
- Ponge R., Spectral asymmetry, zeta functions, and the noncommutative residue,
  Internat. J. Math. 17 (2006), 1065-1090,
  math.DG/0310102.
 
- Ponge R., Traces on pseudodifferential operators and sums of commutators,
  J. Anal. Math. 110 (2010), 1-30, arXiv:0707.4265.
 
- Scott S., The residue determinant, Comm. Partial Differential
  Equations 30 (2005), 483-507, math.AP/0406268.
 
- Seeley R.T., Complex powers of an elliptic operator, in Singular Integrals
  (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math.
  Soc., Providence, R.I., 1967, 288-307.
 
- Shubin M.A., Pseudodifferential operators and spectral theory, 2nd ed.,
  Springer-Verlag, Berlin, 2001.
 
- Simon B., Trace ideals and their applications, London Mathematical
  Society Lecture Note Series, Vol. 35, Cambridge University Press, Cambridge,
  1979.
 
- Wodzicki M., Noncommutative residue. I. Fundamentals, in K-Theory,
  Arithmetic and Geometry (Moscow, 1984-1986), Lecture Notes in
  Math., Vol. 1289, Springer, Berlin, 1987, 320-399.
 
- Wodzicki M., Spectral asymmetry and noncommutative residue, Thesis, Steklov Institute, Soviet Academy of Sciences, Moscow, 1984.
 
- Yoshioka A., Maeda Y., Omori H., Kobayashi O., On regular Fréchet-Lie
  groups. VII. The group generated by pseudodifferential operators of
  negative order, Tokyo J. Math. 7 (1984), 315-336.
 
 
 | 
 |