| 
 SIGMA 8 (2012), 028, 34 pages      arXiv:1201.1614     
https://doi.org/10.3842/SIGMA.2012.028 
Polynomial Relations for q-Characters via the ODE/IM Correspondence
Juanjuan Sun
 Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8914, Japan
 
 
Received January 08, 2012, in final form May 10, 2012; Published online May 15, 2012 
Abstract
 
Let $U_q(\mathfrak{b})$ be the Borel subalgebra of a quantum affine algebra
of type $X^{(1)}_n$ ($X=A,B,C,D$).
Guided by the ODE/IM correspondence in quantum integrable models,
we propose conjectural polynomial relations among the $q$-characters of
certain representations of $U_q(\mathfrak{b})$.
  
 Key words:
Borel subalgebra; $q$-character; Baxter's $Q$-operator; ODE/IM correspondence. 
pdf (615 kb)  
tex (36 kb)
 
 
References
 
- Baxter R.J., Partition function of the eight-vertex lattice model, Ann.
  Physics 70 (1972), 193-228.
 
- Bazhanov V.V., Frassek R., Lukowski T., Meneghelli C., Staudacher M., Baxter
  $Q$-operators and representations of Yangians, Nuclear Phys. B
  850 (2011), 148-174, arXiv:1010.3699.
 
- Bazhanov V.V., Hibberd A.N., Khoroshkin S.M., Integrable structure of
  ${\mathcal W}_3$ conformal field theory, quantum Boussinesq theory and
  boundary affine Toda theory, Nuclear Phys. B 622 (2002),
  475-547, hep-th/0105177.
 
- Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B., Integrable structure of
  conformal field theory. II. $Q$-operator and DDV equation,
  Comm. Math. Phys. 190 (1997), 247-278,
  hep-th/9604044.
 
- Bazhanov V.V., Tsuboi Z., Baxter's $Q$-operators for supersymmetric spin
  chains, Nuclear Phys. B 805 (2008), 451-516,
  arXiv:0805.4274.
 
- Beck J., Braid group action and quantum affine algebras, Comm. Math.
  Phys. 165 (1994), 555-568, hep-th/9404165.
 
- Bowman J., Irreducible modules for the quantum affine algebra
$U_q(\mathfrak{g})$ and its Borel subalgebra $U_q(\mathfrak{g})^{\geq
  0}$, J. Algebra 316 (2007), 231-253,
  math.QA/0606627.
 
- Chari V., Greenstein J., Filtrations and completions of certain positive level
  modules of affine algebras, Adv. Math. 194 (2005),
  296-331, math.QA/0309016.
 
- Chari V., Pressley A., Quantum affine algebras, Comm. Math. Phys.
  142 (1991), 261-283.
 
- Chari V., Pressley A., Quantum affine algebras and their representations, in
  Representations of Groups (Banff, AB, 1994), CMS Conf. Proc.,
  Vol. 16, Amer. Math. Soc., Providence, RI, 1995, 59-78,
  hep-th/9411145.
 
- Dorey P., Dunning C., Masoero D., Suzuki J., Tateo R., Pseudo-differential
  equations, and the Bethe ansatz for the classical Lie algebras,
  Nuclear Phys. B 772 (2007), 249-289,
  hep-th/0612298.
 
- Dorey P., Dunning C., Tateo R., The ODE/IM correspondence,
  J. Phys. A: Math. Theor. 40 (2007), R205-R283,
  hep-th/0703066.
 
- Drinfel'd V.G., A new realization of Yangians and of quantum affine algebras,
  Sov. Math. Dokl. 36 (1987), 212-216.
 
- Drinfel'd V.G., Sokolov V.V., Lie algebras and equations of Korteweg-de Vries
  type, J. Math. Sci. 30 (1985), 1975-2036.
 
- Feigin B., Frenkel E., Quantization of soliton systems and Langlands duality,
  in Exploring New Structures and Natural Constructions in Mathematical
  Physics, Adv. Stud. Pure Math., Vol. 61, Math. Soc. Japan, Tokyo,
  2011, 185-274, arXiv:0705.2486.
 
- Frenkel E., Mukhin E., Combinatorics of $q$-characters of finite-dimensional
  representations of quantum affine algebras, Comm. Math. Phys.
  216 (2001), 23-57, math.QA/9911112.
 
- Frenkel E., Reshetikhin N., The $q$-characters of representations of quantum
  affine algebras and deformations of $\mathcal{W}$-algebras, in Recent
  Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC,
  1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI,
  1999, 163-205, math.QA/9810055.
 
- Fulton W., Young tableaux. With applications to representation theory and
  geometry, London Mathematical Society Student Texts, Vol. 35,
  Cambridge University Press, Cambridge, 1997.
 
- Hernandez D., The Kirillov-Reshetikhin conjecture and solutions of
  $T$-systems, J. Reine Angew. Math. 596 (2006), 63-87,
  math.QA/0501202.
 
- Hernandez D., Jimbo M., Asymptotic representations and Drinfeld rational
  fractions, arXiv:1104.1891.
 
- >Inoue R., Iyama O., Kuniba A., Nakanishi T., Suzuki J., Periodicities of
  $T$-systems and $Y$-systems, Nagoya Math. J. 197
  (2010), 59-174, arXiv:0812.0667.
 
- Jantzen J.C., Lectures on quantum groups, Graduate Studies in
  Mathematics, Vol. 6, Amer. Math. Soc., Providence, RI, 1996.
 
- Kojima T., Baxter's $Q$-operator for the $W$-algebra $W_N$,
  J. Phys. A: Math. Theor. 41 (2008), 355206, 16 pages,
  arXiv:0803.3505.
 
- Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice
  models. I. Functional relations and representation theory,
  Internat. J. Modern Phys. A 9 (1994), 5215-5266,
  hep-th/9309137.
 
- Kuniba A., Nakanishi T., Suzuki J., $T$-systems and $Y$-systems in
  integrable systems, J. Phys. A: Math. Theor. 44 (2011),
  103001, 146 pages, arXiv:1010.1344.
 
- Kuniba A., Suzuki J., Analytic Bethe ansatz for fundamental representations
  of Yangians, Comm. Math. Phys. 173 (1995), 225-264,
  hep-th/9406180.
 
- Nakai W., Nakanishi T., Paths, tableaux and $q$-characters of quantum affine
  algebras: the Cn case, J. Phys. A: Math. Gen. 39
  (2006), 2083-2115, math.QA/0502041.
 
- Nakajima H., $t$-analogs of $q$-characters of Kirillov-Reshetikhin
  modules of quantum affine algebras, Represent. Theory 7
  (2003), 259-274, math.QA/0204185.
 
- Tsuboi Z., Solutions of the $T$-system and Baxter equations for
  supersymmetric spin chains, Nuclear Phys. B 826 (2010),
  399-455, arXiv:0906.2039.
 
 
 | 
 |