| 
 SIGMA 8 (2012), 034, 25 pages       arXiv:1202.0197      
https://doi.org/10.3842/SIGMA.2012.034 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems
Ernie G. Kalnins a and Willard  Miller Jr. b
 a) Department of Mathematics,  University of Waikato, Hamilton, New Zealand
 b) School of Mathematics,  University of Minnesota, Minneapolis, Minnesota, 55455, USA
 
 
Received March 14, 2012, in final form June 04, 2012; Published online June 07, 2012 
Abstract
 
The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under
Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter)
potentials.
However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable) is an exception,
as its quadratic symmetry algebra doesn't close polynomially.  The 3D 4-parameter  potential for the extended Kepler-Coulomb system is not even 2nd order
superintegrable. However,  Verrier and Evans  (2008) showed  it was 4th order superintegrable, and   Tanoudis and Daskaloyannis (2011) showed that in the
quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra  close polynomially.  Here, based on the
Tremblay, Turbiner and Winternitz construction,  we  consider an infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of
rational numbers (k1,k2) and reducing to the usual systems when k1=k2=1. We show these systems to be superintegrable of arbitrarily high order and work
out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close
rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and
lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.
  
 Key words:
superintegrability; Kepler-Coulomb system. 
pdf (412 kb)  
tex (26 kb)
 
 
References
 
- Ballesteros Á., Herranz F.J., Maximal superintegrability of the generalized
  Kepler-Coulomb system on N-dimensional curved spaces,
  J. Phys. A: Math. Theor. 42 (2009), 245203, 12 pages,
  arXiv:0903.2337.
 
- Eastwood  M., Miller  W. (Editors),
Symmetries and overdetermined systems of partial differential equations,
  The IMA Volumes in Mathematics and its Applications, Vol. 144,
  Springer, New York, 2008.
 
- Evans N.W., Verrier P.E., Superintegrability of the caged anisotropic
  oscillator, J. Math. Phys. 49 (2008), 092902, 10 pages,
  arXiv:0808.2146.
 
- Gonera C., Note on superintegrability of TTW model, arXiv:1010.2915.
 
- Kalnins E.G., Kress J.M., Miller W., A recurrence relation approach to higher
  order quantum superintegrability, SIGMA 7 (2011), 031,
  24 pages, arXiv:1011.6548.
 
- Kalnins E.G., Kress J.M., Miller W., Families of classical subgroup separable
  superintegrable systems, J. Phys. A: Math. Theor. 43
  (2010), 092001, 8 pages, arXiv:0912.3158.
 
- Kalnins E.G., Kress J.M., Miller W., Fine structure for 3D second-order
  superintegrable systems: three-parameter potentials, J. Phys. A:
  Math. Theor. 40 (2007), 5875-5892.
 
- Kalnins E.G., Kress J.M., Miller W., Second order superintegrable systems in
  conformally flat spaces. II. The classical two-dimensional Stäckel
  transform, J. Math. Phys. 46 (2005), 053510, 15 pages.
 
- Kalnins E.G., Kress J.M., Miller W., Superintegrability and higher order
  integrals for quantum systems, J. Phys. A: Math. Theor. 43
  (2010), 265205, 21 pages, arXiv:1002.2665.
 
- Kalnins E.G., Kress J.M., Miller W., Tools for verifying classical and quantum
  superintegrability, SIGMA 6 (2010), 066, 23 pages,
  arXiv:1006.0864.
 
- Kalnins E.G., Kress J.M., Miller W., Post S., Structure theory for second order
  2D superintegrable systems with 1-parameter potentials, SIGMA
  5 (2009), 008, 24 pages, arXiv:0901.3081.
 
- Kalnins E.G., Miller W., Pogosyan G.S., Superintegrability and higher order
  constants for classical and quantum systems, Phys. Atomic Nuclei
  74 (2011), 914-918, arXiv:0912.2278.
 
- Kalnins E.G., Miller W., Post S., Coupling constant metamorphosis and
  Nth-order symmetries in classical and quantum mechanics,
  J. Phys. A: Math. Theor. 43 (2010), 035202, 20 pages,
  arXiv:0908.4393.
 
- Kalnins E.G., Miller W., Post S., Models for quadratic algebras associated with
  second order superintegrable systems in 2D, SIGMA 4
  (2008), 008, 21 pages, arXiv:0801.2848.
 
- Kalnins E.G., Miller W., Post S., Two-variable Wilson polynomials and the
  generic superintegrable system on the 3-sphere, SIGMA 7
  (2011), 051, 26 pages, arXiv:1010.3032.
 
- Maciejewski A.J., Przybylska M., Yoshida H., Necessary conditions for classical
  super-integrability of a certain family of potentials in constant curvature
  spaces, J. Phys. A: Math. Theor. 43 (2010), 382001,
  15 pages, arXiv:1004.3854.
 
- Maciejewski A.J., Przybylska M., Yoshida H., Necessary conditions for the
  existence of additional first integrals for Hamiltonian systems with
  homogeneous potential, Nonlinearity 25 (2012), 255-277,
  nlin.SI/0701057.
 
- Marquette I., Construction of classical superintegrable systems with higher
  order integrals of motion from ladder operators, J. Math. Phys.
  51 (2010), 072903, 9 pages, arXiv:1002.3118.
 
- Post S., Winternitz P., An infinite family of superintegrable deformations of
  the Coulomb potential, J. Phys. A: Math. Theor. 43
  (2010), 222001, 11 pages, arXiv:1003.5230.
 
- Sergyeyev A., Blaszak M., Generalized Stäckel transform and reciprocal
  transformations for finite-dimensional integrable systems,
  J. Phys. A: Math. Theor. 41 (2008), 105205, 20 pages,
  arXiv:0706.1473.
 
- Tanoudis Y., Daskaloyannis C., Algebraic calculation of the energy eigenvalues
  for the nondegenerate three-dimensional Kepler-Coulomb potential,
  SIGMA 7 (2011), 054, 11 pages, arXiv:1102.0397.
 
- Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (Editors),
Superintegrability in classical and quantum systems, CRM Proceedings
  and Lecture Notes, Vol. 37, American Mathematical Society, Providence, RI,
  2004.
 
- Tremblay F., Turbiner A.V., Winternitz P., An infinite family of solvable and
  integrable quantum systems on a plane, J. Phys. A: Math. Theor.
  42 (2009), 242001, 10 pages, arXiv:0904.0738.
 
- Tremblay F., Turbiner A.V., Winternitz P., Periodic orbits for an infinite
  family of classical superintegrable systems, J. Phys. A: Math.
  Theor. 43 (2010), 015202, 14 pages, arXiv:0910.0299.
 
- Tsiganov A.V., Addition theorems and the Drach superintegrable systems,
  J. Phys. A: Math. Theor. 41 (2008), 335204, 16 pages,
  arXiv:0805.3443.
 
- Tsiganov A.V., Leonard Euler: addition theorems and superintegrable systems,
  Regul. Chaotic Dyn. 14 (2009), 389-406,
  arXiv:0810.1100.
 
- Tsiganov A.V., On maximally superintegrable systems, Regul. Chaotic
  Dyn. 13 (2008), 178-190, arXiv:0711.2225.
 
- Verrier P.E., Evans N.W., A new superintegrable Hamiltonian, J. Math.
  Phys. 49 (2008), 022902, 8 pages, arXiv:0712.3677.
 
 
 | 
 |