| 
 SIGMA 8 (2012), 038, 18 pages      arXiv:1206.6173     
https://doi.org/10.3842/SIGMA.2012.038 
On Free Pseudo-Product Fundamental Graded Lie Algebras
Tomoaki Yatsui
 Department of Mathematics, Asahikawa Medical University, Asahikawa 078-8510, Japan
 
 
Received December 16, 2011, in final form June 14, 2012; Published online June 27, 2012 
Abstract
 
In this paper we first state the classification of the prolongations of complex free fundamental graded Lie algebras.
Next we introduce the notion of free pseudo-product fundamental graded Lie
algebras and study the prolongations of complex free pseudo-product fundamental graded Lie
algebras.
Furthermore we investigate the automorphism group of the prolongation of
complex free pseudo-product fundamental graded Lie algebras.
  
 Key words:
fundamental graded Lie algebra; prolongation; pseudo-product graded Lie algebra. 
pdf (388 kb)  
tex (21 kb)
 
 
References
 
- Bourbaki N., Éléments de mathématique. Fasc. XXXVII. Groupes et
  algèbres de Lie. Chapitre II: Algèbres de Lie libres.
  Chapitre III: Groupes de Lie, Actualités Scientifiques et
  Industrielles, No. 1349, Hermann, Paris, 1972.
 
- Bourbaki N., Éléments de mathématique. Fasc. XXXIV. Groupes et
  algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de
  Tits. Chapitre V: Groupes engendrés par des réflexions.
  Chapitre VI: Systèmes de racines, Actualités Scientifiques et
  Industrielles, No. 1337, Hermann, Paris, 1968.
 
- Kac V.G., Simple irreducible graded Lie algebras of finite growth,
  Math. USSR Izv. 2 (1968), 1271-1311.
 
- Kobayashi S., Nagano T., On filtered Lie algebras and geometric
  structures. I, J. Math. Mech. 13 (1964), 875-907.
 
- Morimoto T., Transitive Lie algebras admitting differential systems,
  Hokkaido Math. J. 17 (1988), 45-81.
 
- Morimoto T., Tanaka N., The classification of the real primitive infinite Lie
  algebras, J. Math. Kyoto Univ. 10 (1970), 207-243.
 
- Ochiai T., Geometry associated with semisimple flat homogeneous spaces,
  Trans. Amer. Math. Soc. 152 (1970), 159-193.
 
- Onishchik A.L., Vinberg È.B., Lie groups and algebraic groups, Springer
Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.
 
- Tanaka N., Geometric theory of ordinary differential equations, Report of
  Grant-in-Aid for Scientific Research MESC Japan, 1989.
 
- Tanaka N., On affine symmetric spaces and the automorphism groups of product
  manifolds, Hokkaido Math. J. 14 (1985), 277-351.
 
- Tanaka N., On differential systems, graded Lie algebras and pseudogroups,
  J. Math. Kyoto Univ. 10 (1970), 1-82.
 
- Tanaka N., Projective connections and projective transformations,
  Nagoya Math. J. 12 (1957), 1-24.
 
- Warhurst B., Tanaka prolongation of free Lie algebras, Geom.
  Dedicata 130 (2007), 59-69.
 
- Yamaguchi K., Contact geometry of higher order, Japan. J. Math. (N.S.)
  8 (1982), 109-176.
 
- Yamaguchi K., Differential systems associated with simple graded Lie
  algebras, in Progress in Differential Geometry, Adv. Stud. Pure
  Math., Vol. 22, Math. Soc. Japan, Tokyo, 1993, 413-494.
 
- Yatsui T., On pseudo-product graded Lie algebras, Hokkaido Math. J.
  17 (1988), 333-343.
 
 
 | 
 |