| 
 SIGMA 8 (2012), 042, 30 pages       arXiv:1107.2423      
https://doi.org/10.3842/SIGMA.2012.042 
On the Orthogonality of q-Classical Polynomials of the Hahn Class
Renato Álvarez-Nodarse a,  Rezan Sevinik Adıgüzel b and Hasan Taşeli b
 a) IMUS & Departamento de Análisis Matemático, Universidad de Sevilla, Apdo. 1160, E-41080  Sevilla, Spain
 b) Department of Mathematics, Middle East Technical University (METU), 06531, Ankara, Turkey
 
 
Received July 29, 2011, in final form July 02, 2012; Published online July 11, 2012 
Abstract
 
The central idea behind this review article is to discuss in a unified sense
the orthogonality of all possible polynomial
solutions of the q-hypergeometric difference equation on a q-linear lattice
by means of a qualitative analysis of the q-Pearson equation.
To be more specific, a geometrical approach has been
used by taking into account every possible rational form of the polynomial
coefficients in the q-Pearson equation, together with various relative positions of
their zeros, to describe a desired q-weight function supported on a suitable set of points.
Therefore, our method differs from the standard ones which are based
on the Favard theorem, the three-term recurrence relation
and the difference equation of hypergeometric type.
Our approach enables us to extend the orthogonality
relations for some well-known q-polynomials of the Hahn class
to a larger set of their parameters.
  
 Key words:
q-polynomials; orthogonal polynomials on q-linear lattices; q-Hahn class. 
pdf (653 kb)  
tex (168 kb)
 
 
References
 
- Álvarez-Nodarse R., On characterizations of classical polynomials,
  J. Comput. Appl. Math. 196 (2006), 320-337.
 
- Álvarez-Nodarse R., Polinomios hipergeométricos clásicos y
  q-polinomios, Monographs of the "García de Galdeano"
  Mathematics Seminar, Vol. 26, Universidad de Zaragoza Seminario Matematico
  "Garcia de Galdeano", Zaragoza, 2003.
 
- Álvarez-Nodarse R., Arvesú J., On the q-polynomials in the
  exponential lattice x(s)=c1qs+c3, Integral Transform. Spec.
  Funct. 8 (1999), 299-324.
 
- Álvarez-Nodarse R., Atakishiyev N.M., Costas-Santos R.S., Factorization of
  the hypergeometric-type difference equation on non-uniform lattices:
  dynamical algebra, J. Phys. A: Math. Gen. 38 (2005),
  153-174, arXiv:1003.4853.
 
- Álvarez-Nodarse R., Medem J.C., q-classical polynomials and the
  q-Askey and Nikiforov-Uvarov tableaus, J. Comput. Appl.
  Math. 135 (2001), 197-223.
 
- Álvarez-Nodarse R., Sevinik Adgüzel R., Ta seli H., The
  orthogonality of q-classical polynomials of the Hahn class: a geometrical
  approach, arXiv:1107.2423.
 
- Andrews G.E., Askey R., Classical orthogonal polynomials, in Orthogonal
  Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in
  Math., Vol. 1171, Springer, Berlin, 1985, 36-62.
 
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of
  Mathematics and its Applications, Vol. 71, Cambridge University Press,
  Cambridge, 1999.
 
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that
  generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54
  (1985), no. 319.
 
- Atakishiyev N.M., Klimyk A.U., Wolf K.B., A discrete quantum model of the
  harmonic oscillator, J. Phys. A: Math. Theor. 41 (2008),
  085201, 14 pages, arXiv:0711.3089.
 
- Atakishiyev N.M., Rahman M., Suslov S.K., On classical orthogonal polynomials,
  Constr. Approx. 11 (1995), 181-226.
 
- Chihara T.S., An introduction to orthogonal polynomials, Mathematics
  and its Applications, Vol. 13, Gordon and Breach Science Publishers, New
  York, 1978.
 
- Dehesa J.S., Nikiforov A.F., The orthogonality properties of q-polynomials,
  Integral Transform. Spec. Funct. 4 (1996), 343-354.
 
- Elaydi S., An introduction to difference equations, 3rd ed., Undergraduate
  Texts in Mathematics, Springer, New York, 2005.
 
- Fine N.J., Basic hypergeometric series and applications, Mathematical
  Surveys and Monographs, Vol. 27, American Mathematical Society, Providence,
  RI, 1988.
 
- García A.G., Marcellán F., Salto L., A distributional study of
  discrete classical orthogonal polynomials,  J. Comput. Appl. Math. 57 (1995), 147-162.
 
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of
  Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University
  Press, Cambridge, 2004.
 
- Grünbaum F.A., Discrete models of the harmonic oscillator and a discrete
  analogue of Gauss' hypergeometric equation, Ramanujan J.
  5 (2001), 263-270.
 
- Hahn W., Über Orthogonalpolynome, die q-Differenzengleichungen
  genügen, Math. Nachr. 2 (1949), 4-34.
 
- Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York,
  2002.
 
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials
  and their q-analogues, Springer Monographs in Mathematics,
  Springer-Verlag, Berlin, 2010.
 
- Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal
  polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998,
  http://aw.twi.tudelft.nl/~koekoek/askey/.
 
- Koornwinder T.H., Compact quantum groups and q-special functions, in
  Representations of Lie Groups and Quantum Groups (Trento, 1993),
  Pitman Res. Notes Math. Ser., Vol. 311, Longman Sci. Tech., Harlow,
  1994, 46-128.
 
- Koornwinder T.H., Orthogonal polynomials in connection with quantum groups, in
  Orthogonal polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst.
  Ser. C Math. Phys. Sci., Vol. 294, Kluwer Acad. Publ., Dordrecht, 1990,
  257-292.
 
- Marcellán F., Medem J.C., q-classical orthogonal polynomials: a very
  classical approach, Electron. Trans. Numer. Anal. 9 (1999),
  112-127.
 
- Marcellán F., Petronilho J., On the solution of some distributional
  differential equations: existence and characterizations of the classical
  moment functionals, Integral Transform. Spec. Funct. 2
  (1994), 185-218.
 
- Medem J.C., Álvarez-Nodarse R., Marcellán F., On the q-polynomials:
  a distributional study, J. Comput. Appl. Math. 135 (2001),
  157-196.
 
- Nikiforov A.F., Suslov S.K., Uvarov V.B., Classical orthogonal polynomials of a
  discrete variable, Springer Series in Computational Physics, Springer-Verlag,
  Berlin, 1991.
 
- Nikiforov A.F., Uvarov V.B., Classical orthogonal polynomials of a discrete
  variable on nonuniform nets, Inst. Prikl. Mat. M.V. Keldysha Akad. Nauk SSSR,
  Moscow, 1983, Preprint no. 17, 34 pages (in Russian).
 
- Nikiforov A.F., Uvarov V.B., Polynomial solutions of hypergeometric type
  difference equations and their classification, Integral Transform.
  Spec. Funct. 1 (1993), 223-249.
 
- Nikiforov A.F., Uvarov V.B., Special functions of mathematical physics:
  a unified introduction with applications, Birkhäuser Verlag, Basel, 1988.
 
- Suslov S.K., On the theory of difference analogues of special functions of
  hypergeometric type, Russ. Math. Surv. 44 (1989), 227-278.
 
- Vilenkin N.J., Klimyk A.U., Representation of Lie groups and special
  functions. Vol. 3. Classical and quantum groups and special functions,
  Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer
  Academic Publishers Group, Dordrecht, 1992.
 
 
 | 
 |