| 
 SIGMA 8 (2012), 049, 51 pages       arXiv:1103.4593      
https://doi.org/10.3842/SIGMA.2012.049 
Hermite and Laguerre Symmetric Functions Associated with Operators of Calogero-Moser-Sutherland Type
Patrick Desrosiers a and Martin Hallnäs b
 a) Instituto Matemática y Física, Universidad de Talca, 2 Norte 685, Talca, Chile
 b) Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
 
 
Received March 22, 2012, in final form July 25, 2012; Published online August 03, 2012 
Abstract
 
We introduce and study natural generalisations of the Hermite and Laguerre polynomials in the ring of symmetric functions as eigenfunctions of infinite-dimensional analogues of partial differential operators of Calogero-Moser-Sutherland (CMS) type. In particular, we obtain generating functions, duality relations, limit transitions from Jacobi symmetric functions, and Pieri formulae, as well as the integrability of the corresponding operators. We also determine all ideals in the ring of symmetric functions that are spanned by either Hermite or Laguerre symmetric functions, and by restriction of the corresponding infinite-dimensional CMS operators onto quotient rings given by such ideals we obtain so-called deformed CMS operators. As a consequence of this restriction procedure, we deduce, in particular, infinite sets of polynomial eigenfunctions, which we shall refer to as super Hermite and super Laguerre polynomials, as well as the integrability, of these deformed CMS operators. We also introduce and study series of a generalised hypergeometric type, in the context of both symmetric functions and 'super' polynomials.
  
 Key words:
symmetric functions; super-symmetric polynomials; (deformed) Calogero-Moser-Sutherland models. 
pdf (690 kb)  
tex (54 kb)
 
 
References
 
- Atiyah M.F., Macdonald I.G., Introduction to commutative algebra,
  Addison-Wesley Publishing Co., 1969.
 
- Baker T.H., Forrester P.J., The Calogero-Sutherland model and generalized
  classical polynomials, Comm. Math. Phys. 188 (1997),
  175-216, solv-int/9608004.
 
- Beerends R.J., Opdam E.M., Certain hypergeometric series related to the root
  system BC, Trans. Amer. Math. Soc. 339 (1993),
  581-609.
 
- Bernard D., Gaudin M., Haldane F.D.M., Pasquier V., Yang-Baxter equation in
  long-range interacting systems, J. Phys. A: Math. Gen. 26
  (1993), 5219-5236, hep-th/9301084.
 
- Calogero F., Solution of the one-dimensional N-body problems with quadratic
  and/or inversely quadratic pair potentials, J. Math. Phys.
  12 (1971), 419-436.
 
- Chalykh O., Feigin M., Veselov A., New integrable generalizations of
  Calogero-Moser quantum problem, J. Math. Phys. 39
  (1998), 695-703.
 
- Cherednik I., Integration of quantum many-body problems by affine
  Knizhnik-Zamolodchikov equations, Adv. Math. 106
  (1994), 65-95.
 
- Constantine A.G., The distribution of Hotelling's generalized T02,
  Ann. Math. Statist. 37 (1966), 215-225.
 
- Debiard A., Système différentiel hypergéométrique et parties radiales
  des opérateurs invariants des espaces symétriques de type BCp, in
  Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin
  (Paris, 1986), Lecture Notes in Math., Vol. 1296, Springer,
  Berlin, 1987, 42-124.
 
- Desrosiers P., Dang-Zheng L., Selberg integrals, super hypergeometric functions
  and applications to β-ensembles of random matrices,
arXiv:1109.4659.
 
- Feigin M., Generalized Calogero-Moser systems from rational Cherednik
  algebras, Selecta Math. (N.S.) 18 (2012), 253-281,
arXiv:0809.3487.
 
- Hallnäs M., Langmann E., A unified construction of generalized classical
  polynomials associated with operators of Calogero-Sutherland type,
  Constr. Approx. 31 (2010), 309-342,
math-ph/0703090.
 
- Heckman G.J., Opdam E.M., Root systems and hypergeometric functions. I,
  Compositio Math. 64 (1987), 329-352.
 
- Herz C.S., Bessel functions of matrix argument, Ann. of Math. (2)
  61 (1955), 474-523.
 
- Heyneman R.G., Sweedler M.E., Affine Hopf algebras. I, J. Algebra
  13 (1969), 192-241.
 
- James A.T., Special functions of matrix and single argument in statistics, in
  Theory and Application of Special Functions (Proc. Advanced Sem.,
  Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Math.
  Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975,
  497-520.
 
- James A.T., Constantine A.G., Generalized Jacobi polynomials as spherical
  functions of the Grassmann manifold, Proc. London Math. Soc. (3)
  29 (1974), 174-192.
 
- Kaneko J., Selberg integrals and hypergeometric functions associated with
  Jack polynomials, SIAM J. Math. Anal. 24 (1993),
  1086-1110.
 
- Kerov S., Okounkov A., Olshanski G., The boundary of the Young graph with
  Jack edge multiplicities, Int. Math. Res. Not. 1998
  (1998), no. 4, 173-199.
 
- Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal
  polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998,
  http://aw.twi.tudelft.nl/~koekoek/askey/.
 
- Kohler H., Guhr T., Supersymmetric extensions of
  Calogero-Moser-Sutherland-like models: construction and some
  solutions, J. Phys. A: Math. Gen. 38 (2005), 9891-9915,
math-ph/0510039.
 
- Korányi A., Hua-type integrals, hypergeometric functions and symmetric
  polynomials, in International Symposium in Memory of Hua Loo Keng,
  Vol. II (Beijing, 1988), Springer, Berlin, 1991, 169-180.
 
- Lassalle M., Coefficients binomiaux généralisés et polynômes de
  Macdonald, J. Funct. Anal. 158 (1998), 289-324.
 
- Lassalle M., Polynômes de Hermite généralisés, C. R. Acad.
  Sci. Paris Sér. I Math. 313 (1991), 579-582.
 
- Lassalle M., Polynômes de Jacobi généralisés, C. R. Acad.
  Sci. Paris Sér. I Math. 312 (1991), 425-428.
 
- Lassalle M., Polynômes de Laguerre généralisés, C. R. Acad.
  Sci. Paris Sér. I Math. 312 (1991), 725-728.
 
- Lassalle M., Une formule du binôme généralisée pour les polynômes de
  Jack, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990),
  253-256.
 
- Macdonald I.G., Hypergeometric functions, unpublished.
 
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford
  Mathematical Monographs, The Clarendon Press, Oxford University Press, New
  York, 1995.
 
- Moens E.M., Van der Jeugt J., On dimension formulas for gl(m|n)
  representations, J. Lie Theory 14 (2004), 523-535.
 
- Muirhead R.J., Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical
  Statistics, John Wiley & Sons Inc., New York, 1982.
 
- Okounkov A., Olshanski G., Shifted Jack polynomials, binomial formula, and
  applications, Math. Res. Lett. 4 (1997), 69-78,
q-alg/9608020.
 
- Olshanetsky M.A., Perelomov A.M., Quantum integrable systems related to Lie
  algebras, Phys. Rep. 94 (1983), 313-404.
 
- Olshanski G., Laguerre and Meixner orthogonal bases in the algebra of symmetric
  functions, Int. Math. Res. Not., to appear, arXiv:1103.5848.
 
- Olshanski G., Laguerre and Meixner symmetric functions, and
  infinite-dimensional diffusion processes, J. Math. Sci. 174
  (2011), 41-57, arXiv:1009.2037.
 
- Opdam E.M., Some applications of hypergeometric shift operators,
  Invent. Math. 98 (1989), 1-18.
 
- Opdam E.M., Lecture notes on Dunkl operators for real and complex reflection
  groups, MSJ Memoirs, Vol. 8, Mathematical Society of Japan, Tokyo,
  2000.
 
- Rains E.M., BCn-symmetric polynomials, Transform. Groups
  10 (2005), 63-132, math.QA/0112035.
 
- Reed M., Simon B., Methods of modern mathematical physics. I. Functional
  analysis, 2nd ed., Academic Press Inc., New York, 1980.
 
- Sergeev A., Superanalogs of the Calogero operators and Jack polynomials,
  J. Nonlinear Math. Phys. 8 (2001), 59-64,
math.RT/0106222.
 
- Sergeev A.N., Veselov A.P., BC∞ Calogero-Moser operator and
  super Jacobi polynomials, Adv. Math. 222 (2009),
  1687-1726, arXiv:0807.3858.
 
- Sergeev A.N., Veselov A.P., Deformed quantum Calogero-Moser problems and
  Lie superalgebras, Comm. Math. Phys. 245 (2004),
  249-278, math-ph/0303025.
 
- Sergeev A.N., Veselov A.P., Generalised discriminants, deformed
  Calogero-Moser-Sutherland operators and super-Jack polynomials,
  Adv. Math. 192 (2005), 341-375, math-ph/0307036.
 
- Sergeev A.N., Veselov A.P., Quantum Calogero-Moser systems: a view from
  infinity, in XVIth International Congress on Mathematical Physics,
  World Sci. Publ., Hackensack, NJ, 2010, 333-337, arXiv:0910.5463.
 
- Stanley R.P., Some combinatorial properties of Jack symmetric functions,
  Adv. Math. 77 (1989), 76-115.
 
- van Diejen J.F., Confluent hypergeometric orthogonal polynomials related to the
  rational quantum Calogero system with harmonic confinement, Comm.
  Math. Phys. 188 (1997), 467-497, q-alg/9609032.
 
- van Diejen J.F., Properties of some families of hypergeometric orthogonal
  polynomials in several variables, Trans. Amer. Math. Soc.
  351 (1999), 233-270, q-alg/9604004.
 
- Yan Z.M., A class of generalized hypergeometric functions in several variables,
  Canad. J. Math. 44 (1992), 1317-1338.
 
 
 | 
 |