| 
 SIGMA 8 (2012), 069, 10 pages      arXiv:1208.1782     
https://doi.org/10.3842/SIGMA.2012.069 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
Complex SUSY Transformations and the Painlevé IV Equation
David Bermúdez
 Departamento de Física, Cinvestav, AP 14-740, 07000 México DF, Mexico
 
 
Received July 29, 2012, in final form September 28, 2012; Published online October 11, 2012 
Abstract
 
In this paper we will explicitly work out the complex first-order SUSY transformation for the harmonic oscillator in order to obtain both real and complex new exactly-solvable potentials. Furthermore, we will show that this systems lead us to exact complex solutions of the Painlevé IV equation with complex parameters. We present some concrete examples of such solutions.
  
 Key words:
supersymmetric quantum mechanics; Painlevé equations; differential equations; quantum harmonic oscillator; polynomial Heisenberg algebras. 
pdf (508 kb)  
tex (190 kb)
 
 
References
 
- Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and
  inverse scattering, London Mathematical Society Lecture Note Series,
  Vol. 149, Cambridge University Press, Cambridge, 1991.
 
- Adler V.È., Nonlinear chains and Painlevé equations, Phys. D
  73 (1994), 335-351.
 
- Andrianov A., Cannata F., Ioffe M., Nishnianidze D., Systems with higher-order
  shape invariance: spectral and algebraic properties, Phys. Lett. A
  266 (2000), 341-349,
quant-ph/9902057.
 
- Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.P., SUSY quantum mechanics
  with complex superpotentials and real energy spectra, Internat. J.
  Modern Phys. A 14 (1999), 2675-2688,
quant-ph/9806019.
 
- Aref'eva I., Fernandez D.J., Hussin V., Negro J., Nieto L.M., Samsonov B.F. (Editors),
Progress in Supersymmetric Quantum Mechanics (PSQM'03)
  (Valladolid, Spain, July 15-19, 2003), J. Phys. A: Math. Gen.
  37 (2004).
 
- Bagrov V.G., Samsonov B.F., Darboux transformation, factorization and
  supersymmetry in one-dimensional quantum mechanics, Theoret. and
  Math. Phys. 104 (1995), 1051-1060.
 
- Bagrov V.G., Samsonov B.F., Darboux transformation of the Schrödinger
  equation, Phys. Particles Nuclei 28 (1997), 374-397.
 
- Bassom A.P., Clarkson P.A., Hicks A.C., Bäcklund transformations and solution
  hierarchies for the fourth Painlevé equation, Stud. Appl. Math.
  95 (1995), 1-71.
 
- Bermúdez D., Fernández C D., Supersymmetric quantum mechanics and
  Painlevé IV equation, SIGMA 7 (2011), 025,
  14 pages, arXiv:1012.0290.
 
- Bermúdez D., Fernández C D., Complex solutions to the Painlevé IV
  equation through supersymmetric quantum mechanics, AIP Conf. Proc.
  1420 (2012), 47-51, arXiv:1110.0555.
 
- Bermúdez D., Fernández C. D.J., Non-Hermitian Hamiltonians and the
  Painlevé IV equation with real parameters, Phys. Lett. A
  375 (2011), 2974-2978, arXiv:1104.3599.
 
- Boiti M., Pempinelli F., Nonlinear Schrödinger equation, Bäcklund
  transformations and Painlevé transcendents, Nuovo Cimento B
  59 (1980), 40-58.
 
- Carballo J., Fernández C D., Negro J., Nieto L., Polynomial Heisenberg
  algebras, J. Phys. A: Math. Gen. 37 (2004), 10349-10362.
 
- Clarkson P.A., Kruskal M.D., New similarity reductions of the Boussinesq
  equation, J. Math. Phys. 30 (1989), 2201-2213.
 
- Conte R., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008.
 
- Dubov S.Y., Eleonski V.M., Kulagin N.E., Equidistant spectra of
  anharmonic oscillators, Chaos 4 (1994), 47-53.
 
- Fernández C. D.J., New hydrogen-like potentials, Lett. Math. Phys.
  8 (1984), 337-343.
 
- Fernández C. D.J., Hussin V., Higher-order SUSY, linearized nonlinear
  Heisenberg algebras and coherent states, J. Phys. A: Math. Gen.
  32 (1999), 3603-3619.
 
- Fernández C. D.J., Muñoz R., Ramos A., Second order SUSY
  transformations with "complex energies", Phys. Lett. A
  308 (2003), 11-16, quant-ph/0212026.
 
- Fernández C. D.J., Negro J., Nieto L., Elementary systems with partial
  finite ladder spectra, Phys. Lett. A 324 (2004), 139-144.
 
- Florjanczyk M., Gagnon L., Exact solutions for a higher-order nonlinear
  Schrödinger equation, Phys. Rev. A 41 (1990),
  4478-4485.
 
- Fokas A.S., Its A.R., Kitaev A.V., Discrete Painlevé equations and their
  appearance in quantum gravity, Comm. Math. Phys. 142
  (1991), 313-344.
 
- Gravel S., Hamiltonians separable in Cartesian coordinates and third-order
  integrals of motion, J. Math. Phys. 45 (2004), 1003-1019,
  math-ph/0302028.
 
- Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the
  complex plane, de Gruyter Studies in Mathematics, Vol. 28, Walter de
  Gruyter & Co., Berlin, 2002.
 
- Infeld L., Hull T.E., The factorization method, Rev. Modern Phys.
  23 (1951), 21-68.
 
- Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé.
  A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
 
- Junker G., Roy P., Conditionally exactly solvable potentials: a supersymmetric
  construction method, Ann. Physics 270 (1998), 155-177,
  quant-ph/9803024.
 
- Marquette I., Superintegrability with third order integrals of motion, cubic
  algebras, and supersymmetric quantum mechanics. II. Painlevé
  transcendent potentials, J. Math. Phys. 50 (2009), 095202,
  18 pages, arXiv:0811.1568.
 
- Mateo J., Negro J., Third-order differential ladder operators and
  supersymmetric quantum mechanics, J. Phys. A: Math. Theor.
  41 (2008), 045204, 28 pages.
 
- Mielnik B., Factorization method and new potentials with the oscillator
  spectrum, J. Math. Phys. 25 (1984), 3387-3389.
 
- Nieto M.M., Relationship between supersymmetry and the inverse method in
  quantum mechanics, Phys. Lett. B 145 (1984), 208-210.
 
- Paquin G., Winternitz P., Group theoretical analysis of dispersive long wave
  equations in two space dimensions, Phys. D 46 (1990),
  122-138.
 
- Rosas-Ortiz O., Muñoz R., Non-Hermitian SUSY hydrogen-like
  Hamiltonians with real spectra, J. Phys. A: Math. Gen. 36
  (2003), 8497-8506, quant-ph/0302190.
 
- Samsonov B.F., Ovcharov I.N., The Darboux transformation and nonclassical
  orthogonal polynomials, Russian Phys. J. 38 (1995),
  378-384.
 
- Sukumar C.V., Supersymmetric quantum mechanics of one-dimensional systems,
  J. Phys. A: Math. Gen. 18 (1985), 2917-2936.
 
- Veselov A.P., Shabat A.B., A dressing chain and the spectral theory of the
  Schrödinger operator, Funct. Anal. Appl. 27 (1993),
  81-96.
 
- Wess J., Bagger J., Supersymmetry and supergravity, 2nd ed., Princeton Series
  in Physics, Princeton University Press, Princeton, NJ, 1992.
 
- Winternitz P., Physical applications of Painlevé type equations quadratic
  in the highest derivatives, in Painlevé Transcendents (Sainte-Adèle,
  PQ, 1990), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, Plenum,
  New York, 1992, 425-431.
 
- Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B
  188 (1981), 513-554.
 
 
 | 
 |