| 
 SIGMA 8 (2012), 077, 10 pages       arXiv:1210.0041      
https://doi.org/10.3842/SIGMA.2012.077 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
Definite Integrals using Orthogonality and Integral Transforms
Howard S. Cohl a and Hans Volkmer b
 a) Applied and Computational Mathematics Division, Information Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD, 20899-8910, USA
 b) Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI, 53201, USA
 
 
Received July 31, 2012, in final form October 15, 2012; Published online October 19, 2012 
Abstract
 
We obtain definite integrals for products of associated Legendre functions
with Bessel functions, associated Legendre functions, and Chebyshev polynomials
of the first kind using orthogonality and integral transforms.
  
 Key words:
definite integrals; associated Legendre functions; Bessel functions; Chebyshev polynomials of the first kind. 
pdf (328 kb)  
tex (14 kb)
 
 
References
 
- Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas,
  graphs, and mathematical tables, National Bureau of Standards Applied
  Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington,
  D.C., 1964.
 
- Askey R., Orthogonal polynomials and special functions, Society for Industrial
  and Applied Mathematics, Philadelphia, Pa., 1975.
 
- Cohl H.S., Fourier, Gegenbauer and Jacobi expansions for a power-law
  fundamental solution of the polyharmonic equation and polyspherical addition
  theorems, arXiv:1209.6047.
 
- Cohl H.S., Erratum: Developments in determining the gravitational potential
  using toroidal functions, Astronom. Nachr. 333 (2012),
  784-785.
 
- Cohl H.S., Dominici D.E., Generalized Heine's identity for complex Fourier
  series of binomials, Proc. R. Soc. Lond. Ser. A 467 (2011),
  333-345, arXiv:0912.0126.
 
- Cohl H.S., Tohline J.E., Rau A.R.P., Srivastava H.M., Developments in
  determining the gravitational potential using toroidal functions,
  Astronom. Nachr. 321 (2000), 363-372.
 
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, seventh
  ed., Elsevier/Academic Press, Amsterdam, 2007.
 
- Hardy G.H., Further researches in the theory of divergent series and integrals,
  Trans. Cambridge Philos. Soc. 21 (1908), 1-48.
 
- MacRobert T.M., Spherical harmonics. An elementary treatise on harmonic
  functions with applications, 2nd ed., Methuen & Co. Ltd., London, 1947.
 
- Magnus W., Oberhettinger F., Soni R.P., Formulas and theorems for the special
  functions of mathematical physics, 3rd ed., Die Grundlehren der
  mathematischen Wissenschaften, Bd. 52, Springer-Verlag, New York, 1966.
 
- Morse P.M., Feshbach H., Methods of theoretical physics, Vols. 1, 2,
  McGraw-Hill Book Co. Inc., New York, 1953.
 
- Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook
  of mathematical functions, Cambridge University Press, Cambridge, 2010.
 
- Prudnikov A.P., Brychkov Y.A., Marichev O.I., Integrals and series.
  Vol. 3. More special functions, Gordon and Breach Science Publishers, New
  York, 1990.
 
- Schäfke F.W., Einführung in die Theorie der speziellen Funktionen der
  mathematischen Physik, Die Grundlehren der mathematischen Wissenschaften,
  Bd. 118, Springer-Verlag, Berlin, 1963.
 
- Watson G.N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge
  Mathematical Library, Cambridge University Press, Cambridge, 1944.
 
 
 | 
 |