| 
 SIGMA 8 (2012), 081, 18 pages       arXiv:1206.3653      
https://doi.org/10.3842/SIGMA.2012.081 
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
Chikashi Arita a and Kohei Motegi b
 a) Institut de Physique Théorique CEA, F-91191 Gif-sur-Yvette, France
 b) Okayama Institute for Quantum Physics, Kyoyama 1-9-1, Okayama 700-0015, Japan
 
 
Received July 06, 2012, in final form October 23, 2012; Published online October 27, 2012 
Abstract
 
We study the entanglement properties of a higher-integer-spin  Affleck-Kennedy-Lieb-Tasaki model
 with quantum group symmetry in the periodic boundary condition. We exactly
calculate the finite size correction terms of the entanglement entropies from the double scaling limit.
We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find
the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy.
This behavior is similar to that of the entanglement
entropies.
  
 Key words:
valence-bond-solid state; entanglement; quantum group. 
pdf (662 kb)  
tex (384 kb)
 
 
References
 
- Affleck I., Kennedy T., Lieb E.H., Tasaki H., Valence bond ground states in
  isotropic quantum antiferromagnets, Comm. Math. Phys. 115
  (1988), 477-528.
 
- Amico L., Fazio R., Osterloh A., Vedral V., Entanglement in many-body systems,
  Rev. Modern Phys. 80 (2008), 517-576,
  quant-ph/0703044.
 
- Arita C., Motegi K., Spin-spin correlation functions of the
  q-valence-bond-solid state of an integer spin model, J. Math.
  Phys. 52 (2011), 063303, 15 pages, arXiv:1009.4018.
 
- Arovas D.P., Auerbach A., Haldane F.D.M., Extended Heisenberg models of
  antiferromagnetism: analogies to the fractional quantum Hall effect,
  Phys. Rev. Lett. 60 (1988), 531-534.
 
- Batchelor M.T., Mezincescu L., Nepomechie R.I., Rittenberg V.,
  q-deformations of the O(3) symmetric spin-1 Heisenberg
  chain, J. Phys. A: Math. Gen. 23 (1990), L141-L144.
 
- Bennett C.H., DiVincenzo D.P., Quantum information and computation,
  Nature 404 (2000), 247-255.
 
- Calabrese P., Cardy J., Entanglement entropy and quantum field theory,
  J. Stat. Mech. Theory Exp. 2004 (2004), P06002, 27 pages,
  hep-th/0405152.
 
- Drinfel'd V.G., Hopf algebras and the quantum Yang-Baxter equation,
  Dokl. Akad. Nauk SSSR 32 (1985), 254-258.
 
- Fang H., Korepin V.E., Roychowdhury V., Entanglement in a valence-bond-solid
  state, Phys. Rev. Lett. 93 (2004), 227203, 4 pages,
  quant-ph/0406067.
 
- Fannes M., Nachtergaele B., Werner R.F., Exact antiferromagnetic ground-states
  of quantum spin chains, Europhys. Lett. 10 (1989),
  633-637.
 
- Freitag W.D., Müller-Hartmann E., Complete analysis of two spin
  correlations of valence bond solid chains for all integer spins,
  Z. Phys. B 83 (1991), 381-390.
 
- García-Ripoll J.J., Martín-Delgado M.A., Cirac J.I., Implementation of
  spin Hamiltonians in optical lattices, Phys. Rev. Lett. 93
  (2004), 250405, 4 pages, cond-mat/0404566.
 
- Haldane F.D.M., Continuum dynamics of the 1-D Heisenberg
  antiferromagnet: identification with the O(3) nonlinear sigma
  model, Phys. Lett. A 93 (1983), 464-468.
 
- Haldane F.D.M., Nonlinear field theory of large-spin Heisenberg
  antiferromagnets: semiclassically quantized solitons of the one-dimensional
  easy-axis Néel state, Phys. Rev. Lett. 50 (1983),
  1153-1156.
 
- Jimbo M., A q-difference analogue of U(g) and the
  Yang-Baxter equation, Lett. Math. Phys. 10 (1985),
  63-69.
 
- Katsura H., Hirano T., Hatsugai Y., Exact analysis of entanglement in gapped
  quantum spin chains, Phys. Rev. B 76 (2007), 012401,
  4 pages, cond-mat/0702196.
 
- Katsura H., Hirano T., Korepin V.E., Entanglement in an SU(n)
  valence-bond-solid state, J. Phys. A: Math. Theor. 41
  (2008), 135304, 13 pages, arXiv:0711.3882.
 
- Katsura H., Kawashima N., Kirillov A.N., Korepin V.E., Tanaka S., Entanglement
  in valence-bond-solid states on symmetric graphs, J. Phys. A: Math.
  Theor. 43 (2010), 255303, 28 pages, arXiv:1003.2007.
 
- Klümper A., Schadschneider A., Zittartz J., Equivalence and solution of
  anisotropic spin-1 models and generalized t-J fermion models in
  one dimension, J. Phys. A: Math. Gen. 24 (1991),
  L955-L959.
 
- Klümper A., Schadschneider A., Zittartz J., Groundstate properties of a
  generalized VBS-model, Z. Phys. B 87 (1992), 281-287.
 
- Klümper A., Schadschneider A., Zittartz J., Matrix product ground states
  for one-dimensional spin-1 quantum antiferromagnets, Europhys. Lett.
  24 (1993), 293-297, cond-mat/9307028.
 
- Korepin V.E., Xu Y., Entanglement in valence-bond-solid states,
  Internat. J. Modern Phys. B 24 (2010), 1361-1440,
  arXiv:0908.2345.
 
- Lyoyd S., A potentially realizable quantum computer, Science
  261 (1993), 1569-1571.
 
- Motegi K., The matrix product representation for the q-VBS state of
  one-dimensional higher integer spin model, Phys. Lett. A
  374 (2010), 3112-3115, arXiv:1003.0050.
 
- Orús R., Geometric entanglement in a one-dimensional valence bond solid
  state, Phys. Rev. A 78 (2008), 062332, 4 pages,
  arXiv:0808.0938.
 
- Orús R., Universal geometric entanglement close to quantum phase transitions,
  Phys. Rev. Lett. 100 (2008), 130502, 4 pages,
  arXiv:0711.2556.
 
- Orús R., Dusuel S., Vidal J., Equivalence of critical scaling laws for
  many-body entanglement in the Lipkin-Meshkov-Glick model, Phys.
  Rev. Lett. 101 (2008), 025701, 4 pages, arXiv:0803.3151.
 
- Orús R., Tu H.H., Entanglement and SU(n) symmetry in
  one-dimensional valence-bond solid states, Phys. Rev. B 83
  (2011), 201101(R), 4 pages, arXiv:1103.3994.
 
- Orús R., Wei T.C., Geometric entanglement of one-dimensional systems:
  bounds and scalings in the thermodynamic limit, Quantum Inf. Comput.
  11 (2011), 563-573, arXiv:1006.5584.
 
- Orús R., Wei T.C., Tu H.H., Phase diagram of the SO(n)
  blinear-biquadratic chain from many-body entanglement, Phys. Rev. B
  84 (2011), 064409, 7 pages, arXiv:1010.5029.
 
- Santos R.A., Korepin V.E., Entanglement of disjoint blocks in the
  one-dimensional spin-1 VBS, J. Phys. A: Math. Theor. 45
  (2012), 125307, 19 pages, arXiv:1110.3300.
 
- Santos R.A., Paraan F.N.C., Korepin V.E., Klümper A., Entanglement spectra
  of q-deformed higher spin VBS states, J. Phys. A: Math. Theor.
  45 (2012), 175303, 14 pages, arXiv:1201.5927.
 
- Santos R.A., Paraan F.N.C., Korepin V.E., Klümper A., Entanglement spectra
  of the q-deformed Affleck-Kennedy-Lieb-Tasaki model and matrix product
  states, Europhys. Lett. 98 (2012), 37005, 6 pages,
  arXiv:1112.0517.
 
- Stéphan J.M., Misguich G., Alet F., Geometric entanglement and
  Affleck-Ludwig boundary entropies in critical XXZ and Ising chains,
  Phys. Rev. B 82 (2010), 180406(R), 4 pages,
  arXiv:1007.4161.
 
- Totsuka K., Suzuki M., Hidden symmetry breaking in a generalized valence-bond
  solid model, J. Phys. A: Math. Gen. 27 (1994), 6443-6456.
 
- Totsuka K., Suzuki M., Matrix formalism for the VBS-type models and hidden
  order, J. Phys. Condens. Matter 7 (1995), 1639-1662.
 
- Verstraete F., Martín-Delgado M.A., Cirac J.I., Diverging entanglement
  length in gapped quantum spin systems, Phys. Rev. Lett. 92
  (2004), 087201, 4 pages, quant-ph/0311087.
 
- Wei T.C., Das D., Mukhopadyay S., Vishveshwara S., Goldbart P.M., Global
  entanglement and quantum criticality in spin chains, Phys. Rev. A
  71 (2005), 060305(R), 4 pages, quant-ph/0405162.
 
- Wei T.C., Vishveshwara S., Goldbart P.M., Global geometric entanglement in
  transverse-field XY spin chains: finite and infinite systems,
  Quantum Inf. Comput. 11 (2011), 326-354,
  arXiv:1012.4114.
 
- Xu Y., Katsura H., Hirano T., Korepin V.E., Entanglement and density matrix of
  a block of spins in AKLT model, J. Stat. Phys. 133
  (2008), 347-377, arXiv:0802.3221.
 
- Zhang J., Wei T.C., Laflamme R., Experimental quantum simulation of
  entanglement in many-body systems, Phys. Rev. Lett. 107
  (2011), 010501, 4 pages, arXiv:1104.0275.
 
 
 | 
 |