| 
 SIGMA 8 (2012), 084, 15 pages      arXiv:1211.1762     
https://doi.org/10.3842/SIGMA.2012.084 
Quasi-Grammian Solutions of the Generalized Coupled Dispersionless Integrable System
Bushra Haider and Mahmood-ul Hassan
 Department of Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
 
 
Received June 22, 2012, in final form October 10, 2012; Published online November 08, 2012 
Abstract
 
The standard binary Darboux transformation is investigated
and is used to obtain quasi-Grammian multisoliton solutions of the
generalized coupled dispersionless integrable system.
  
 Key words:
integrable systems; binary Darboux transformation; quasideterminants. 
pdf (893 kb)  
tex (506 kb)
 
 
References
 
- Aoyama S., Kodama Y., Topological conformal field theory with a rational W
  potential and the dispersionless KP hierarchy, Modern Phys.
  Lett. A 9 (1994), 2481-2492, hep-th/9404011.
 
- Carroll R., Kodama Y., Solution of the dispersionless Hirota equations,
  J. Phys. A: Math. Gen. 28 (1995), 6373-6387,
  hep-th/9506007.
 
- Cieslinski J., An algebraic method to construct the Darboux matrix,
  J. Math. Phys. 36 (1995), 5670-5706.
 
- Cieslinski J., Biernacki W., A new approach to the
  Darboux-Bäcklund transformation versus the standard dressing method,
  J. Phys. A: Math. Gen. 38 (2005), 9491-9501,
  nlin.SI/0506016.
 
- Darboux G., Leçons sur la théorie générale des surfaces et les
  applications géométriques du calcul infinitésimal.
  Vol. IV. Deformation infiniment petite et représentation sphérique,
  Gauthier-Villars, Paris, 1896.
 
- Darboux G., Sur une proposition relative aux équations linéaires,
  C. R. Acad. Sci. Paris 94 (1882), 1456-1459.
 
- Doktorov E.V., Leble S.B., A dressing method in mathematical physics,
  Mathematical Physics Studies, Vol. 28, Springer, Dordrecht, 2007.
 
- Dunajski M., An interpolating dispersionless integrable system,
  J. Phys. A: Math. Theor. 41 (2008), 315202, 9 pages,
  arXiv:0804.1234.
 
- Gel'fand I., Gel'fand S., Retakh V., Wilson R.L., Quasideterminants,
  Adv. Math. 193 (2005), 56-141, math.QA/0208146.
 
- Gel'fand I., Retakh V., Determinants of matrices over noncommutative rings,
  Funct. Anal. Appl. 25 (1991), 91-102.
 
- Gel'fand I., Retakh V., Theory of noncommutative determinants, and
  characteristic functions of graphs, Funct. Anal. Appl. 26
  (1992), 231-246.
 
- Gel'fand I., Retakh V., Wilson R.L., Quaternionic quasideterminants and
  determinants, in Lie Groups and Symmetric Spaces, Amer. Math. Soc.
  Transl. Ser. 2, Vol. 210, Amer. Math. Soc., Providence, RI, 2003, 111-123,
  math.QA/0206211.
 
- Haider B., Hassan M., Quasideterminant solutions of an integrable chiral model
  in two dimensions, J. Phys. A: Math. Theor. 42 (2009),
  355211, 18 pages, arXiv:0912.3071.
 
- Haider B., Hassan M., The U(N) chiral model and exact multi-solitons,
  J. Phys. A: Math. Theor. 41 (2008), 255202, 17 pages,
  arXiv:0912.1984.
 
- Haider B., Hassan M., Saleem U., Binary Darboux transformation and
  quasideterminant solutions of the chiral field, J. Nonlinear Math.
  Phys., to appear.
 
- Hassan M., Darboux transformation of the generalized coupled dispersionless
  integrable system, J. Phys. A: Math. Theor. 42 (2009),
  065203, 11 pages, arXiv:0912.1671.
 
- Hirota R., Tsujimoto S., Note on "New coupled integrable dispersionless
  equations", J. Phys. Soc. Japan 63 (1994), 3533.
 
- Ji Q., Darboux transformation for MZM-I, II equations, Phys.
  Lett. A 311 (2003), 384-388.
 
- Kakuhata H., Konno K., A generalization of coupled integrable, dispersionless
  system, J. Phys. Soc. Japan 65 (1996), 340-341.
 
- Kakuhata H., Konno K., Canonical formulation of a generalized coupled
  dispersionless system, J. Phys. A: Math. Gen. 30 (1997),
  L401-L407.
 
- Kakuhata H., Konno K., Lagrangian, Hamiltonian and conserved quantities for
  coupled integrable, dispersionless equations, J. Phys. Soc. Japan
  65 (1996), 1-2.
 
- Kodama Y., A method for solving the dispersionless KP equation and its exact
  solutions, Phys. Lett. A 129 (1988), 223-226.
 
- Kodama Y., Pierce V.U., Combinatorics of dispersionless integrable systems and
  universality in random matrix theory, Comm. Math. Phys. 292
  (2009), 529-568, arXiv:0811.0351.
 
- Konno K., Oono H., New coupled integrable dispersionless equations,
  J. Phys. Soc. Japan 63 (1994), 377-378.
 
- Konopelchenko B.G., Magri F., Coisotropic deformations of associative algebras
  and dispersionless integrable hierarchies, Comm. Math. Phys.
  274 (2007), 627-658, nlin.SI/0606069.
 
- Kotlyarov V.P., On equations gauge equivalent to the sine-Gordon and
  Pohlmeyer-Lund-Regge equations, J. Phys. Soc. Japan
  63 (1994), 3535-3537.
 
- Krichever I.M., The dispersionless Lax equations and topological minimal
  models, Comm. Math. Phys. 143 (1992), 415-429.
 
- Krob D., Leclerc B., Minor identities for quasi-determinants and quantum
  determinants, Comm. Math. Phys. 169 (1995), 1-23,
  hep-th/9411194.
 
- Leble S.B., Binary Darboux transformations and systems of N waves in
  rings, Theoret. and Math. Phys. 122 (2000), 200-210.
 
- Leble S.B., Elementary and binary Darboux transformations at rings,
  Comput. Math. Appl. 35 (1998), 73-81.
 
- Leble S.B., Ustinov N.V., Darboux transforms, deep reductions and solitons,
  J. Phys. A: Math. Gen. 26 (1993), 5007-5016.
 
- Leble S.B., Ustinov N.V., Deep reductions for matrix Lax system, invariant forms
  and elementary Darboux transforms, in Proceedings of NEEDS-92 Workshop, World
  Scientific, Singapore, 1993, 34-41.
 
- Li C.X., Nimmo J.J.C., Quasideterminant solutions of a non-abelian Toda
  lattice and kink solutions of a matrix sine-Gordon equation,
  Proc. R. Soc. Lond. Ser. A 464 (2008), 951-966,
  arXiv:0711.2594.
 
- Mañas M., Darboux transformations for the nonlinear Schrödinger
  equations, J. Phys. A: Math. Gen. 29 (1996), 7721-7737.
 
- Matveev V.B., Darboux invariance and the solutions of Zakharov-Shabat equations, Preprint LPTHE 79-07, LPTHE, Orsay, 1979, 11 pages.
 
- Matveev V.B., Darboux transformation and explicit solutions of the
  Kadomtcev-Petviaschvily equation, depending on functional parameters,
  Lett. Math. Phys. 3 (1979), 213-216.
 
- Matveev V.B., Darboux transformation and the explicit solutions of
  differential-difference and difference-difference evolution equations. I,
 Lett. Math. Phys. 3 (1979), 217-222.
 
- Matveev V.B., Salle M.A., Differential-difference evolution equations.
  II. Darboux transformation for the Toda lattice, Lett. Math.
  Phys. 3 (1979), 425-429.
 
- Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series
  in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
 
- Nimmo J.J.C., Darboux transformations for discrete systems, Chaos
  Solitons Fractals 11 (2000), 115-120.
 
- Nimmo J.J.C., Darboux transformations from reductions of the KP hierarchy, in
  Nonlinear Evolution Equations & Dynamical Systems: NEEDS '94 (Los
  Alamos, NM), World Sci. Publ., River Edge, NJ, 1995, 168-177,
  solv-int/9410001.
 
- Nimmo J.J.C., Gilson C.R., Ohta Y., Applications of Darboux transformations
  to the self-dual Yang-Mills equations, Theoret. and Math. Phys.
  122 (2000), 239-246.
 
- Oevel W., Schief W., Darboux theorems and the KP hierarchy, in Applications
  of Analytic and Geometric Methods to Nonlinear Differential Equations
  (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, 193-206.
 
- Park Q.H., Shin H.J., Darboux transformation and Crum's formula for
  multi-component integrable equations, Phys. D 157 (2001),
  1-15.
 
- Rogers C., Schief W.K., Bäcklund and Darboux transformations: geometry and
  modern applications in soliton theory, Cambridge Texts in Applied
  Mathematics, Cambridge University Press, Cambridge, 2002.
 
- Sakhnovich A.L., Dressing procedure for solutions of nonlinear equations and
  the method of operator identities, Inverse Problems 10
  (1994), 699-710.
 
- Takasaki K., Dispersionless Toda hierarchy and two-dimensional string theory,
  Comm. Math. Phys. 170 (1995), 101-116,
  hep-th/9403190.
 
- Takasaki K., Takebe T., Integrable hierarchies and dispersionless limit,
  Rev. Math. Phys. 7 (1995), 743-808,
  hep-th/9405096.
 
- Ustinov N.V., The reduced self-dual Yang-Mills equation, binary and
  infinitesimal Darboux transformations, J. Math. Phys. 39
  (1998), 976-985.
 
- Wiegmann P.B., Zabrodin A., Conformal maps and integrable hierarchies,
  Comm. Math. Phys. 213 (2000), 523-538,
  hep-th/9909147.
 
 
 | 
 |