| 
 SIGMA 8 (2012), 087, 23 pages       arXiv:1211.3803      
https://doi.org/10.3842/SIGMA.2012.087 
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C)
Alexandar B. Yanovski a and Gaetano Vilasi b
 a) Department of Mathematics & Applied Mathematics, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
 b) Dipartimento di Fisica, Università degli Studi di Salerno, INFN, Sezione di Napoli-GC Salerno, Via Ponte Don Melillo, 84084, Fisciano (Salerno), Italy
 
 
Received May 17, 2012, in final form November 05, 2012; Published online November 16, 2012 
Abstract
 
We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson-Nijenhuis structure defined on the manifold of potentials.
  
 Key words:
Lax representation; recursion operators; Nijenhuis tensors. 
pdf (451 kb)  
tex (33 kb)
 
 
References
 
- Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., The inverse scattering
  transform - Fourier analysis for nonlinear problems, Studies in
  Appl. Math. 53 (1974), 249-315.
 
- Beals R., Coifman R.R., Scattering and inverse scattering for first order
  systems, Comm. Pure Appl. Math. 37 (1984), 39-90.
 
- Borovik A.E., Popkov V.Y., Completely integrable spin-1 chains,
  Soviet Phys. JETP 71 (1990), 177-186.
 
- Faddeev L.D., Takhtajan L.A., Hamiltonian methods in the theory of solitons,
  Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.
 
- Gerdjikov V.S., Generalised Fourier transforms for the soliton equations.
  Gauge-covariant formulation, Inverse Problems 2 (1986),
  51-74.
 
- Gerdjikov V.S., Grahovski G.G., Mikhailov A.V., Valchev T.I., Polynomial
  bundles and generalised Fourier transforms for integrable equations on
  A.III-type symmetric spaces, SIGMA 7 (2011), 096,
  48 pages, arXiv:1108.3990.
 
- Gerdjikov V.S., Grahovski G.G., Mikhailov A.V., Valchev T.I., On soliton
  interactions for hierarchy of generalized Heisenberg ferromagnetic model on
SU(3)/SU(1)×SU(2) symmetric space,
  J. Geom. Symmetry Phys. 25 (2012), 23-56,
  arXiv:1201.0534.
 
- Gerdjikov V.S., Mikhailov A.V., Valchev T.I., Recursion operators and
  reductions of integrable equations on symmetric spaces, J. Geom.
  Symmetry Phys. 20 (2010), 1-34, arXiv:1004.4182.
 
- Gerdjikov V.S., Mikhailov A.V., Valchev T.I., Reductions of integrable
  equations on A.III-type symmetric spaces, J. Phys. A: Math.
  Theor. 43 (2010), 434015, 13 pages, arXiv:1004.4182.
 
- Gerdjikov V.S., Vilasi G., Yanovski A.B., Integrable Hamiltonian hierarchies. Spectral and geometric methods,
  Lecture Notes in Physics, Vol. 748, Springer-Verlag, Berlin, 2008.
 
- Gerdjikov V.S., Yanovski A.B., Completeness of the eigenfunctions for the
  Caudrey-Beals-Coifman system, J. Math. Phys. 35
  (1994), 3687-3725.
 
- Gerdjikov V.S., Yanovski A.B., Gauge covariant formulation of the generating
  operator. I. The Zakharov-Shabat system, Phys. Lett. A
  103 (1984), 232-236.
 
- Gerdjikov V.S., Yanovski A.B., Gauge covariant formulation of the generating
  operator. II. Systems on homogeneous spaces, Phys. Lett. A
  110 (1985), 53-58.
 
- Gerdjikov V.S., Yanovski A.B., Gauge covariant theory of the generating
  operator. I, Comm. Math. Phys. 103 (1986), 549-568.
 
- Goto M., Grosshans F.D., Semisimple Lie algebras, Lecture Notes in
  Pure and Applied Mathematics, Vol. 38, Marcel Dekker Inc., New York, 1978.
 
- Gürses M., Karasu A., Sokolov V.V., On construction of recursion operators
  from Lax representation, J. Math. Phys. 40 (1999),
  6473-6490, solv-int/9909003.
 
- Iliev I.D., Khristov E.K., Kirchev K.P., Spectral methods in soliton equations,
  Pitman Monographs and Surveys in Pure and Applied Mathematics,
  Vol. 73, Longman Scientific & Technical, Harlow, 1994.
 
- Lancaster P., Theory of matrices, Academic Press, New York, 1969.
 
- Lombardo S., Mikhailov A.V., Reductions of integrable equations: dihedral
  group, J. Phys. A: Math. Gen. 37 (2004), 7727-7742,
  nlin.SI/0404013.
 
- Magri F., A geometrical approach to the nonlinear solvable equations, in
  Nonlinear Evolution Equations and Dynamical Systems (Proc. Meeting,
  Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., Vol. 120,
  Springer, Berlin, 1980, 233-263.
 
- Magri F., A simple model of the integrable Hamiltonian equation,
  J. Math. Phys. 19 (1978), 1156-1162.
 
- Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian
  systems through the theory of Poisson-Nijenhuis manifolds, Quaderni del
  Dipartimento di Matematica, Università di Milano, 1984.
 
- Magri F., Morosi C., Ragnisco O., Reduction techniques for infinite-dimensional
  Hamiltonian systems: some ideas and applications, Comm. Math.
  Phys. 99 (1985), 115-140.
 
- Marsden J.E., Ratiu T., Reduction of Poisson manifolds, Lett. Math.
  Phys. 11 (1986), 161-169.
 
- Mikhailov A.V., Reduction in the integrable systems. Reduction groups,
  JETP Lett. 32 (1980), 187-192.
 
- Mikhailov A.V., The reduction problem and the inverse scattering method,
  Phys. D 3 (1981), 73-117.
 
- Ortega J.P., Ratiu T.S., Momentum maps and Hamiltonian reduction,
  Progress in Mathematics, Vol. 222, Birkhäuser Boston Inc., Boston,
  MA, 2004.
 
- Ortega J.P., Ratiu T.S., Singular reduction of Poisson manifolds,
  Lett. Math. Phys. 46 (1998), 359-372.
 
- Valchev T.I., On certain reductions of integrable equations on symmetric
  spaces, AIP Conf. Proc. 1340 (2011), 154-164.
 
- Yanovski A.B., Gauge-covariant approach to the theory of the generating
  operators for soliton equations, Ph.D. thesis, Joint Institute for Nuclear
  Research, Dubna, 1987.
 
- Yanovski A.B., Generating operators for the generalized Zakharov-Shabat system
  and its gauge equivalent system in sl(3,C) case,
  Naturwissenchaftlich Theoretisches Zentrum Report N 20, Universität
  Leipzig, 1993, available at
  http://cdsweb.cern.ch/record/256804/files/P00019754.pdf.
 
- Yanovski A.B., Geometric interpretation of the recursion operators for the
  generalized Zakharov-Shabat system in pole gauge on the Lie algebra
  A2, J. Geom. Symmetry Phys. 23 (2011), 97-111.
 
- Yanovski A.B., Geometry of the Recursion Operators for Caudrey-Beals-Coifman
  system in the presence of Mikhailov Zp reductions, J.
  Geom. Symmetry Phys. 25 (2012), 77-97.
 
- Yanovski A.B., On the recursion operators for the Gerdjikov, Mikhailov, and
  Valchev system, J. Math. Phys. 52 (2011), 082703,
  14 pages.
 
- Yanovski A.B., Vilasi G., Geometry of the recursion operators for the GMV
  system, J. Nonlinear Math. Phys. 19 (2012), 1250023,
  18 pages.
 
- Zakharov V.E., Konopel'chenko B.G., On the theory of recursion operator,
  Comm. Math. Phys. 94 (1984), 483-509.
 
- Zakharov V.E., Takhtajan L.A., Equivalence of the nonlinear Schrödinger
  equation and the equation of a Heisenberg ferromagnet, Theoret. and
  Math. Phys. 38 (1979), 17-23.
 
 
 | 
 |