| 
 SIGMA 8 (2012), 095, 37 pages       arXiv:1207.4386      
https://doi.org/10.3842/SIGMA.2012.095 
Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
Andrey M. Levin a, b,  Mikhail A. Olshanetsky b, Andrey V. Smirnov b, c and Andrei V. Zotov b
 a) Laboratory of Algebraic Geometry, GU-HSE, 7 Vavilova Str., Moscow, 117312, Russia
 b) Institute of Theoretical and Experimental Physics, Moscow, 117218, Russia
 c) Department of Mathematics, Columbia University, New York, NY 10027, USA
 
 
Received July 14, 2012, in final form November 29, 2012; Published online December 10, 2012 
Abstract
 
We describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory
corresponding to the adjoint $G$-bundles of different topological types
over complex curves $\Sigma_{g,n}$ of genus $g$ with $n$ marked points.
The bundles are defined by their characteristic classes - elements of
$H^2(\Sigma_{g,n},\mathcal{Z}(G))$, where $\mathcal{Z}(G)$ is a center of the simple complex Lie group $G$.
The KZB equations are the horizontality condition for the projectively flat connection (the KZB connection)
defined on the bundle of conformal blocks over the moduli space of curves.
The space of conformal blocks has been known to be decomposed
into a few sectors corresponding to the characteristic classes of the underlying bundles.
The KZB connection preserves these sectors. In this paper we construct the connection explicitly for elliptic curves with marked points and
prove its flatness.
  
 Key words:
integrable system; KZB equation; Hitchin system; characteristic class. 
pdf (648 kb)  
tex (48 kb)
 
 
References
 
- Aminov G., Arthamonov S., Reduction of the elliptic ${\rm SL}(N,{\mathbb C})$
  top, J. Phys. A: Math. Theor. 44 (2011), 075201, 34 pages,
  arXiv:1009.1867.
 
- Aminov G., Arthamonov S., Levin A.M., Olshanetsky M.A., Zotov A.V., Around
  Painlevé VI field theory, submitted.
 
- Atiyah M.F., Vector bundles over an elliptic curve, Proc. London Math.
  Soc. 7 (1957), 414-452.
 
- Axelrod S., Pietra S.D., Witten E., Geometric quantization of Chern-Simons
  gauge theory, J. Differential Geom. 33 (1991), 787-902.
 
- Beauville A., Conformal blocks, fusion rules and the Verlinde formula, in
  Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry
  (Ramat Gan, 1993), Israel Math. Conf. Proc., Vol. 9, Bar-Ilan
  Univ., Ramat Gan, 1996, 75-96, alg-geom/9405001.
 
- Beauville A., Laszlo Y., Conformal blocks and generalized theta functions,
  Comm. Math. Phys. 164 (1994), 385-419,
  alg-geom/9309003.
 
- Ben-Zvi D., Frenkel E., Geometric realization of the Segal-Sugawara
  construction, in Topology, geometry and quantum field theory, London
  Math. Soc. Lecture Note Ser., Vol. 308, Cambridge University Press,
  Cambridge, 2004, 46-97, math.AG/0301206.
 
- Bernard D., On the Wess-Zumino-Witten models on Riemann surfaces,
  Nuclear Phys. B 309 (1988), 145-174.
 
- Bernard D., On the Wess-Zumino-Witten models on the torus,
  Nuclear Phys. B 303 (1988), 77-93.
 
- Bernstein J., Schwarzman O., Chevalley's theorem for complex crystallographic
  Coxeter groups, Funct. Anal. Appl. 12 (1978), 308-310.
 
- Bernstein J., Schwarzman O., Complex crystallographic Coxeter groups and
  affine root systems, J. Nonlinear Math. Phys. 13 (2006),
  163-182.
 
- Bourbaki N., Lie groups and Lie algebras, Chapters 4-6, Elements of
  Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
 
- Braden H.W., Dolgushev V.A., Olshanetsky M.A., Zotov A.V., Classical
$r$-matrices and the Feigin-Odesskii algebra via Hamiltonian and
  Poisson reductions, J. Phys. A: Math. Gen. 36 (2003),
  6979-7000, hep-th/0301121.
 
- Bulycheva K., Monopole solutions to the Bogomolny equation as three-dimensional
  generalizations of the Kronecker series, Theoret. and Math. Phys.
  172 (2012), 1232-1242, arXiv:1203.4674.
 
- Chernyakov Yu.B., Levin A.M., Olshanetsky M.A., Zotov A.V., Elliptic
  Schlesinger system and Painlevé VI, J. Phys. A: Math. Gen.
  39 (2006), 12083-12101, nlin.SI/0602043.
 
- Enriquez B., Rubtsov V., Hecke-Tyurin parametrization of the Hitchin and
  KZB systems, in Moscow Seminar on Mathematical Physics. II,
  Amer. Math. Soc. Transl. Ser. 2, Vol. 221, Amer. Math. Soc.,
  Providence, RI, 2007, 1-31, math.AG/9911087.
 
- Etingof P., Schiffmann O., Twisted traces of intertwiners for Kac-Moody
  algebras and classical dynamical $R$-matrices corresponding to generalized
  Belavin-Drinfeld triples, Math. Res. Lett. 6 (1999),
  593-612, math.QA/9908115.
 
- Etingof P., Schiffmann O., Varchenko A., Traces of intertwiners for quantum
  groups and difference equations, Lett. Math. Phys. 62
  (2002), 143-158, math.QA/0207157.
 
- Etingof P., Varchenko A., Geometry and classification of solutions of the
  classical dynamical Yang-Baxter equation, Comm. Math. Phys.
  192 (1998), 77-120, q-alg/9703040.
 
- Faltings G., A proof for the Verlinde formula, J. Algebraic Geom.
  3 (1994), 347-374.
 
- Fehér L., Pusztai B.G., Generalizations of Felder's elliptic dynamical
  $r$-matrices associated with twisted loop algebras of self-dual Lie
  algebras, Nuclear Phys. B 621 (2002), 622-642,
  math.QA/0109132.
 
- Felder G., The KZB equations on Riemann surfaces, in Symétries Quantiques
  (Les Houches, 1995), North-Holland, Amsterdam, 1998, 687-725,
  hep-th/9609153.
 
- Felder G., Gawedzki K., Kupiainen A., Spectra of Wess-Zumino-Witten
  models with arbitrary simple groups, Comm. Math. Phys. 117
  (1988), 127-158.
 
- Felder G., Wieczerkowski C., Conformal blocks on elliptic curves and the
  Knizhnik-Zamolodchikov-Bernard equations, Comm. Math. Phys.
  176 (1996), 133-161, hep-th/9411004.
 
- Frenkel E., Lectures on the Langlands program and conformal field theory, in
  Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin,
  2007, 387-533, hep-th/0512172.
 
- Friedman R., Morgan J.W., Holomorphic principal bundles over elliptic curves,
  math.AG/9811130.
 
- Friedman R., Morgan J.W., Holomorphic principal bundles over elliptic
  curves. II. The parabolic construction, J. Differential Geom.
  56 (2000), 301-379, math.AG/0006174.
 
- Friedman R., Morgan J.W., Witten E., Principal $G$-bundles over elliptic
  curves, Math. Res. Lett. 5 (1998), 97-118,
  alg-geom/9707004.
 
- Fuchs J., Schweigert C., The action of outer automorphisms on bundles of chiral
  blocks, Comm. Math. Phys. 206 (1999), 691-736,
  hep-th/9805026.
 
- Gorsky A., Nekrasov N., Hamiltonian systems of Calogero-type, and
  two-dimensional Yang-Mills theory, Nuclear Phys. B 414
  (1994), 213-238, hep-th/9304047.
 
- Gukov S., Witten E., Branes and quantization, Adv. Theor. Math. Phys.
  13 (2009), 1445-1518, arXiv:0809.0305.
 
- Harnad J., Quantum isomonodromic deformations and the
  Knizhnik-Zamolodchikov equations, in Symmetries and Integrability of
  Difference Equations (Estérel, PQ, 1994), CRM Proc. Lecture
  Notes, Vol. 9, Amer. Math. Soc., Providence, RI, 1996, 155-161,
  hep-th/9406078.
 
- Hitchin N.J., Flat connections and geometric quantization, Comm. Math.
  Phys. 131 (1990), 347-380.
 
- Hitchin N.J., Stable bundles and integrable systems, Duke Math. J.
  54 (1987), 91-114.
 
- Hori K., Global aspects of gauged Wess-Zumino-Witten models,
  Comm. Math. Phys. 182 (1996), 1-32,
  hep-th/9411134.
 
- Ivanov D.A., Knizhnik-Zamolodchikov-Bernard equations on Riemann
  surfaces, Internat. J. Modern Phys. A 10 (1995),
  2507-2536, hep-th/9410091.
 
- Ivanova T.A., Lechtenfeld O., Popov A.D., Rahn T., Instantons and
  Yang-Mills flows on coset spaces, Lett. Math. Phys. 89
  (2009), 231-247, arXiv:0904.0654.
 
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University
  Press, Cambridge, 1990.
 
- Kapustin A., Witten E., Electric-magnetic duality and the geometric Langlands
  program, Commun. Number Theory Phys. 1 (2007), 1-236,
  hep-th/0604151.
 
- Knizhnik V.G., Zamolodchikov A.B., Current algebra and Wess-Zumino model
  in two dimensions, Nuclear Phys. B 247 (1984), 83-103.
 
- Korotkin D., Samtleben H., On the quantization of isomonodromic deformations on
  the torus, Internat. J. Modern Phys. A 12 (1997),
  2013-2029, hep-th/9511087.
 
- Kuroki G., Takebe T., Twisted Wess-Zumino-Witten models on elliptic
  curves, Comm. Math. Phys. 190 (1997), 1-56,
  q-alg/9612033.
 
- Levin A.M., Olshanetsky M.A., Double coset construction of moduli space of
  holomorphic bundles and Hitchin systems, Comm. Math. Phys.
  188 (1997), 449-466, alg-geom/9605005.
 
- Levin A.M., Olshanetsky M.A., Hierarchies of isomonodromic deformations and
  Hitchin systems, in Moscow Seminar in Mathematical Physics,
  Amer. Math. Soc. Transl. Ser. 2, Vol. 191, Amer. Math. Soc.,
  Providence, RI, 1999, 223-262.
 
- Levin A.M., Olshanetsky M.A., Smirnov A.V., Zotov A.V., Calogero-Moser
  systems for simple Lie groups and characteristic classes of bundles,
  J. Geom. Phys. 62 (2012), 1810-1850, arXiv:1007.4127.
 
- Levin A.M., Olshanetsky M.A., Smirnov A.V., Zotov A.V., Characteristic classes
  and Hitchin systems. General construction, Comm. Math. Phys.
  316 (2012), 1-44, arXiv:1006.0702.
 
- Levin A.M., Olshanetsky M.A., Smirnov A.V., Zotov A.V., Characteristic classes
  of ${\rm SL}(N)$-bundles and quantum dynamical elliptic $R$-matrices,
  J. Phys. A: Math. Theor., to appear, arXiv:1208.5750.
 
- Levin A.M., Olshanetsky M.A., Zotov A.V., Hitchin systems - symplectic Hecke
  correspondence and two-dimensional version, Comm. Math. Phys.
  236 (2003), 93-133, nlin.SI/0110045.
 
- Levin A.M., Olshanetsky M.A., Zotov A.V., Monopoles and modifications of
  bundles over elliptic curves, SIGMA 5 (2009), 065,
  22 pages, arXiv:0811.3056.
 
- Levin A.M., Olshanetsky M.A., Zotov A.V., Painlevé VI, rigid tops and
  reflection equation, Comm. Math. Phys. 268 (2006), 67-103,
  math.QA/0508058.
 
- Levin A.M., Zotov A.V., On rational and elliptic forms of Painlevé VI
  equation, in Moscow Seminar on Mathematical Physics. II,
  Amer. Math. Soc. Transl. Ser. 2, Vol. 221, Amer. Math. Soc.,
  Providence, RI, 2007, 173-183.
 
- Looijenga E., Root systems and elliptic curves, Invent. Math.
  38 (1976), 17-32.
 
- Mironov A., Morozov A., Runov B., Zenkevich Y., Zotov A., Spectral duality
  between Heisenberg chain and Gaudin model, Lett. Math. Phys., to
  appear, arXiv:1206.6349.
 
- Mironov A., Morosov A., Shakirov Sh., Towards a proof of AGT conjecture by
  methods of matrix models, Internat. J. Modern Phys. A 27
  (2012), 1230001, 32 pages, arXiv:1011.5629.
 
- Mironov A., Morozov A., Zenkevich Y., Zotov A., Spectral duality in integrable
  systems from AGT conjecture, JETP Lett., to appear, arXiv:1204.0913.
 
- Narasimhan M.S., Seshadri C.S., Stable and unitary vector bundles on a compact
  Riemann surface, Ann. of Math. (2) 82 (1965), 540-567.
 
- Nekrasov N., Holomorphic bundles and many-body systems, Comm. Math.
  Phys. 180 (1996), 587-603, hep-th/9503157.
 
- Nekrasov N., Pestun V., Seiberg-Witten geometry of four dimensional $N=2$
  quiver gauge theories, arXiv:1211.2240.
 
- Olshanetsky M.A., Three lectures on classical integrable systems and gauge
  field theories, Phys. Part. Nuclei 40 (2009), 93-114,
  arXiv:0802.3857.
 
- Olshanetsky M.A., Zotov A. V., Isomonodromic problems on elliptic curve, rigid
  tops and reflection equations, in Elliptic Integrable Systems, Rokko Lectures in Mathematics, Vol. 18, Kobe University, 2005, 149-172.
 
- Presley A., Segal G., Loop groups, Clarendon Press, Oxford, 1986.
 
- Reshetikhin N., The Knizhnik-Zamolodchikov system as a deformation of the
  isomonodromy problem, Lett. Math. Phys. 26 (1992),
  167-177.
 
- Schweigert C., On moduli spaces of flat connections with non-simply connected
  structure group, Nuclear Phys. B 492 (1997), 743-755,
  hep-th/9611092.
 
- Simpson C.T., Harmonic bundles on noncompact curves, J. Amer. Math.
  Soc. 3 (1990), 713-770.
 
- Smirnov A.V., Integrable ${\rm sl}(N,{\mathbb C})$-tops as
  Calogero-Moser systems, Theoret. and Math. Phys. 158
  (2009), 300-312, arXiv:0809.2187.
 
- Takasaki K., Gaudin model, KZ equation and an isomonodromic problem on the
  torus, Lett. Math. Phys. 44 (1998), 143-156,
  hep-th/9711058.
 
- Zabrodin A.V., Zotov A.V., Quantum Painlevé-Calogero correspondence,
  J. Math. Phys. 53 (2012), 073507, 19 pages,
  arXiv:1107.5672.
 
- Zabrodin A.V., Zotov A.V., Quantum Painlevé-Calogero correspondence for
  Painlevé VI, J. Math. Phys. 53 (2012), 073508, 19 pages,
  arXiv:1107.5672.
 
- Zotov A.V., 1+1 Gaudin model, SIGMA 7 (2011), 067,
  26 pages, arXiv:1012.1072.
 
- Zotov A.V., Classical integrable systems and their field-theoretical
  generalizations, Phys. Part. Nuclei 37 (2006), 759-842.
 
- Zotov A.V., Elliptic linear problem for the Calogero-Inozemtsev model and
  Painlevé VI equation, Lett. Math. Phys. 67 (2004),
  153-165, hep-th/0310260.
 
- Zotov A.V., Chernyakov Yu.B., Integrable multiparticle systems obtained by means
  of the Inozemtsev limit, Theoret. and Math. Phys. 129
  (2001), 1526-1542, hep-th/0102069.
 
- Zotov A.V., Levin A.M., An integrable system of interacting elliptic tops,
  Theoret. and Math. Phys. 146 (2006), 45-52.
 
- Zotov A.V., Levin A.M., Olshanetsky M.A., Chernyakov Yu.B., Quadratic algebras
  associated with elliptic curves, Theoret. and Math. Phys.
  156 (2008), 1103-1122, arXiv:0710.1072.
 
 
 | 
 |