| 
 SIGMA 8 (2012), 098, 73 pages      arXiv:1210.1485     
https://doi.org/10.3842/SIGMA.2012.098 
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology” 
Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics
Florian Girelli a, b,  Franz Hinterleitner c and Seth A. Major d
 a) Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
 b) University Erlangen-Nuremberg, Institute for Theoretical Physics III, Erlangen, Germany
 c) Department of Theoretical Physics and Astrophysics, Faculty of Science  of the Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
 d) Department of Physics, Hamilton College, Clinton NY 13323, USA
 
 
Received May 30, 2012, in final form December 03, 2012; Published online December 13, 2012 
Abstract
 
Research during the last decade demonstrates that effects originating on the Planck scale are currently being tested in
multiple observational contexts. In this review we discuss quantum gravity phenomenological models and their possible links to loop quantum
gravity. Particle frameworks, including kinematic models, broken and deformed Poincaré symmetry, non-commutative geometry, relative
locality and generalized uncertainty principle, and field theory frameworks, including Lorentz violating operators in effective field
theory and non-commutative field theory, are discussed. The arguments relating loop quantum gravity to models with modified dispersion relations are reviewed,
as well as, arguments supporting the preservation of local Lorentz invariance. The phenomenology
related to loop quantum cosmology is briefly reviewed, with a focus on possible effects that might be tested in the near future.
As the discussion makes clear, there remains much interesting work to do in
establishing the connection between the fundamental theory of loop quantum gravity and these specific
phenomenological models, in determining observational consequences of the characteristic aspects of loop quantum gravity, and in further refining current observations.
Open problems related to these developments are highlighted.
  
 Key words:
quantum gravity; loop quantum gravity; quantum gravity phenomenology; modified dispersion relation. 
pdf (1291 kb)  
tex (340 kb)
 
 
References
 
- Abbasi R.U. et al. (High Resolution Fly's Eye Collaboration), First
  observation of the Greisen-Zatsepin-Kuzmin suppression, Phys. Rev.
  Lett. 100 (2008), 101101, 5 pages, astro-ph/0703099.
 
- Abdo A.A. et al. (Fermi GBM/LAT Collaborations), A limit on the variation of
  the speed of light arising from quantum gravity effects, Nature
  462 (2009), 331-334.
 
- Abdo A.A. et al. (Fermi GBM/LAT Collaborations), Fermi observations of
  high-energy gamma-ray emission from GRB 080916C, Science
  323 (2009), 1688-1693, arXiv:0908.1832.
 
- Abraham J. et al. (Auger Collaboration), Correlation of the highest-energy
  cosmic rays with nearby extragalactic objects, Science 318
  (2007), 938-943, arXiv:0711.2256.
 
- Abraham J. et al. (Auger Collaboration), Upper limit on the cosmic-ray photon
  flux above 1019 eV using the surface detector of the Pierre Auger
  observatory, Astropart. Phys. 29 (2008), 243-256,
  arXiv:0712.1147.
 
- Agostini A., Amelino-Camelia G., Arzano M., Marcianò A., Tacchi R.A.,
  Generalizing the Noether theorem for Hopf-algebra spacetime symmetries,
  Modern Phys. Lett. A 22 (2007), 1779-1786,
  hep-th/0607221.
 
- Agullo I., Observational signatures in LQC?, Talk at International Loop
  Quantum Gravity Seminar (March 29, 2011), available at
  http://relativity.phys.lsu.edu/ilqgs/agullo032911.pdf.
 
- Agullo I., Parker L., Non-Gaussianities and the stimulated creation of quanta
  in the inflationary universe, Phys. Rev. D 83 (2011),
  063526, 16 pages, arXiv:1010.5766.
 
- Aharonian F. et al. (HEGRA Collaboration), The Crab Nebula and Pulsar between
  500 GeV and 80 TeV: observations with the HEGRA stereoscopic air Cherenkov
  telescopes, Astrophys. J. 614 (2004), 897-913,
  astro-ph/0407118.
 
- Alfaro J., Morales-Técotl H.A., Reyes M., Urrutia L.F., Alternative
  approaches to Lorentz violation invariance in loop quantum gravity inspired
  models, Phys. Rev. D 70 (2004), 084002, 5 pages,
  gr-qc/0404113.
 
- Alfaro J., Morales-Técotl H.A., Urrutia L.F., Quantum gravity corrections to
  neutrino propagation, Phys. Rev. Lett. 84 (2000),
  2318-2321, gr-qc/9909079.
 
- Alfaro J., Morales-Técotl H.A., Urrutia L.F., Loop quantum gravity and
  light propagation, Phys. Rev. D 65 (2002), 103509,
  18 pages, hep-th/0108061.
 
- Alfaro J., Morales-Técotl H.A., Urrutia L.F., Quantum gravity and spin-1/2
  particle effective dynamics, Phys. Rev. D 66 (2002),
  124006, 19 pages, hep-th/0208192.
 
- Aloisio R., Galante A., Grillo A., Liberati S., Luzio E., Méndez F.,
  Deformed special relativity as an effective theory of measurements on quantum
  gravitational backgrounds, Phys. Rev. D 73 (2006), 045020,
  11 pages, gr-qc/0511031.
 
- Aloisio R., Galante A., Grillo A.F., Liberati S., Luzio E., Méndez F.,
  Modified special relativity on a fluctuating spacetime, Phys. Rev. D
  74 (2006), 085017, 7 pages, gr-qc/0607024.
 
- Amelino-Camelia G., Doubly-special relativity: facts, myths and some key open
  issues, in Recent Developments in Theoretical Physics, Stat. Sci.
  Interdiscip. Res., Vol. 9, World Sci. Publ., Hackensack, NJ, 2010, 123-170,
  arXiv:1003.3942.
 
- Amelino-Camelia G., Particle-dependent deformations of Lorentz symmetry,
  arXiv:1111.5643.
 
- Amelino-Camelia G., Quantum gravity phenomenology, arXiv:0806.0339.
 
- Amelino-Camelia G., Relativity in space-times with short-distance structure
  governed by an observer-independent (Planckian) length scale,
  Internat. J. Modern Phys. D 11 (2002), 35-60,
  gr-qc/0012051.
 
- Amelino-Camelia G., Briscese F., Gubitosi G., Marcianò A., Martinetti P.,
  Mercati F., Noether analysis of the twisted Hopf symmetries of canonical
  noncommutative spacetimes, Phys. Rev. D 78 (2008), 025005,
  8 pages, arXiv:0709.4600.
 
- Amelino-Camelia G., Ellis J., Mavromatos N.E., Nanopoulos D.V., Sarkar S.,
  Potential sensitivity of gamma-ray burster observations to wave dispersion in
  vacuo, Nature 293 (1998), 763-765,
  astro-ph/9712103.
 
- Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., Relative
  locality: a deepening of the relativity principle, Gen. Relativity
  Gravitation 43 (2011), 2547-2553, arXiv:1106.0313.
 
- Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., The principle
  of relative locality, Phys. Rev. D 84 (2011), 084010,
  13 pages, arXiv:1101.0931.
 
- Amelino-Camelia G., Laemmerzahl C., Mercati F., Tino G.M., Constraining the
  energy-momentum dispersion relation with Planck-scale sensitivity using cold
  atoms, Phys. Rev. Lett. 103 (2009), 171302, 4 pages,
  arXiv:0911.1020.
 
- Amelino-Camelia G., Loret N., Mandanici G., Mercati F., UV and IR
  quantum-spacetime effects for the Chandrasekhar model, arXiv:0906.2016.
 
- Amelino-Camelia G., Majid S., Waves on noncommutative space-time and gamma-ray
  bursts, Internat. J. Modern Phys. A 15 (2000), 4301-4323,
  hep-th/9907110.
 
- Amelino-Camelia G., Malassa M., Mercati F., Rosati G., Taming nonlocality in
  theories with Planck-scale deformed Lorentz symmetry, Phys. Rev.
  Lett. 106 (2011), 071301, 4 pages, arXiv:1006.2126.
 
- Amelino-Camelia G., Mandanici G., Procaccini A., Kowalski-Glikman J.,
  Phenomenology of doubly special relativity, Internat. J. Modern
  Phys. A 20 (2005), 6007-6037, gr-qc/0312124.
 
- Antonov E.E., Dedenko L.G., Kirillov A.A., Roganova T.M., Fedorova G.F.,
  Fedunin E.Y., Test of Lorentz invariance through observation of the
  longitudinal development of ultrahigh-energy extensive air showers,
  JETP Lett. 73 (2001), 446-450.
 
- Arzano M., Benedetti D., Rainbow statistics, Internat. J. Modern
  Phys. A 24 (2009), 4623-4641, arXiv:0809.0889.
 
- Arzano M., Kowalski-Glikman J., Walkus A., A bound on Planck-scale
  modifications of the energy-momentum composition rule from atomic
  interferometry, Europhys. Lett. 90 (2010), 50004, 4 pages,
  arXiv:0912.2712.
 
- Ashtekar A., Corichi A., Zapata J.A., Quantum theory of geometry.
  III. Non-commutativity of Riemannian structures, Classical
  Quantum Gravity 15 (1998), 2955-2972, gr-qc/9806041.
 
- Ashtekar A., Isham C.J., Representations of the holonomy algebras of gravity
  and nonabelian gauge theories, Classical Quantum Gravity 9
  (1992), 1433-1467, hep-th/9202053.
 
- Ashtekar A., Kaminski W., Lewandowski J., Quantum field theory on a
  cosmological, quantum space-time, Phys. Rev. D 79 (2009),
  064030, 12 pages, arXiv:0901.0933.
 
- Ashtekar A., Lewandowski J., Background independent quantum gravity: a status
  report, Classical Quantum Gravity 21 (2004), R53-R152,
  gr-qc/0404018.
 
- Ashtekar A., Lewandowski J., Differential geometry on the space of connections
  via graphs and projective limits, J. Geom. Phys. 17 (1995),
  191-230, hep-th/9412073.
 
- Ashtekar A., Lewandowski J., Projective techniques and functional integration
  for gauge theories, J. Math. Phys. 36 (1995), 2170-2191,
  gr-qc/9411046.
 
- Ashtekar A., Lewandowski J., Quantum theory of geometry. I. Area operators,
  Classical Quantum Gravity 14 (1997), A55-A81,
  gr-qc/9602046.
 
- Ashtekar A., Lewandowski J., Quantum theory of geometry. II. Volume
  operators, Adv. Theor. Math. Phys. 1 (1997), 388-429,
  gr-qc/9711031.
 
- Ashtekar A., Singh P., Loop quantum cosmology: a status report,
  Classical Quantum Gravity 28 (2011), 213001, 122 pages,
  arXiv:1108.0893.
 
- Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., Ultraviolet finite
  quantum field theory on quantum spacetime, Comm. Math. Phys.
  237 (2003), 221-241, hep-th/0301100.
 
- Balachandran A.P., Ibort A., Marmo G., Martone M., Inequivalence of quantum
  field theories on noncommutative spacetimes: Moyal versus Wick-Voros planes,
  Phys. Rev. D 81 (2010), 085017, 8 pages,
  arXiv:0910.4779.
 
- Balachandran A.P., Ibort A., Marmo G., Martone M., Quantum fields on
  noncommutative spacetimes: theory and phenomenology, SIGMA
  6 (2010), 052, 22 pages, arXiv:1003.4356.
 
- Balachandran A.P., Mangano G., Pinzul A., Vaidya S., Spin and statistics on the
  Groenewold-Moyal plane: Pauli-forbidden levels and transitions,
  Internat. J. Modern Phys. A 21 (2006), 3111-3126,
  hep-th/0508002.
 
- Balachandran A.P., Pinzul A., Qureshi B.A., UV-IR mixing in non-commutative
  plane, Phys. Lett. B 634 (2006), 434-436,
  hep-th/0508151.
 
- Banerjee K., Calcagni G., Martín-Benito M., Introduction to loop quantum
  cosmology, SIGMA 8 (2012), 016, 73 pages,
  arXiv:1109.6801.
 
- Barrau A., Cailleteau T., Cao X., Diaz-Polo J., Grain J., Probing loop quantum
  gravity with evaporating black holes, Phys. Rev. Lett. 107
  (2011), 251301, 5 pages, arXiv:1109.4239.
 
- Bethke L., Magueijo J., Chirality of tensor perturbations for complex values of
  the Immirzi parameter, arXiv:1108.0816.
 
- Bethke L., Magueijo J., Inflationary tensor fluctuations, as viewed by Ashtekar
  variables and their generalizations, Phys. Rev. D 84
  (2011), 024014, 17 pages, arXiv:1104.1800.
 
- Bianchi E., The length operator in loop quantum gravity, Nuclear
  Phys. B 807 (2009), 591-624, arXiv:0806.4710.
 
- Bianchi E., Doná P., Speziale S., Polyhedra in loop quantum gravity,
  Phys. Rev. D 83 (2011), 044035, 17 pages,
  arXiv:1009.3402.
 
- Bianchi E., Haggard H., Discreteness of the volume of space from
  Bohr-Sommerfeld quantization, Phys. Rev. Lett. 107 (2011),
  011301, 4 pages, arXiv:1102.5439.
 
- Bluhm R., Lorentz and CPT tests in matter and antimatter, Nuclear
  Instrum. Meth. Phys. Res. B 221 (2204), 6-11,
  hep-ph/0308281.
 
- Bojowald M., Dynamical initial conditions in quantum cosmology, Phys.
  Rev. Lett. 87 (2001), 121301, 4 pages, gr-qc/0104072.
 
- Bojowald M., Quantum cosmology: a fundamental description of the universe,
  Lecture Notes in Physics, Vol. 835, Springer, New York, 2011.
 
- Bojowald M., Quantum Riemannian geometry and black holes, in Trends in Quantum
  Gravity Research, Editor D.C. Moore, Nova Science Publishers, Inc., New York,
  2006, 219-260, arXiv:0905.4916.
 
- Bojowald M., Calcagni G., Inflationary observables in loop quantum cosmology,
  J. Cosmol. Astropart. Phys. 2011 (2011), no. 3, 032,
  35 pages, arXiv:1011.2779.
 
- Bojowald M., Calcagni G., Tsujikawa S., Observational test of inflation in loop
  quantum cosmology, J. Cosmol. Astropart. Phys. 2011 (2011),
  no. 11, 046, 32 pages, arXiv:1107.1540.
 
- Bojowald M., Hossain G.M., Loop quantum gravity corrections to gravitational
  wave dispersion, Phys. Rev. D 77 (2008), 023508, 14 pages,
  arXiv:0709.2365.
 
- Bojowald M., Hossain G.M., Kagan M., Shankaranarayanan S., Anomaly freedom in
  perturbative loop quantum gravity, Phys. Rev. D 78 (2008),
  063547, 31 pages, arXiv:0806.3929.
 
- Bojowald M., Hossain G.M., Kagan M., Shankaranarayanan S., Gauge invariant
  cosmological perturbation equations with corrections from loop quantum
  gravity, Phys. Rev. D 79 (2009), 043505, 21 pages,
  arXiv:0811.1572.
 
- Bojowald M., Kagan M., Singh P., Hernández H.H., Skirzewski A., Hamiltonian
  cosmological perturbation theory with loop quantum gravity corrections,
  Phys. Rev. D 74 (2006), 123512, 13 pages,
  gr-qc/0609057.
 
- Bolokhov P.A., Nibbelink S.G., Pospelov M., Lorentz violating supersymmetric
  quantum electrodynamics, Phys. Rev. D 72 (2005), 103003,
  17 pages, hep-ph/0505029.
 
- Borris M., Verch R., Dirac field on Moyal-Minkowski spacetime and
  non-commutative potential scattering, Comm. Math. Phys. 293
  (2010), 399-448, arXiv:0812.0786.
 
- Boulatov D.V., A model of three-dimensional lattice gravity, Modern
  Phys. Lett. A 7 (1992), 1629-1646, hep-th/9202074.
 
- Brunnemann J., Rideout D., Properties of the volume operator in loop quantum
  gravity. I. Results, Classical Quantum Gravity 25
  (2008), 065001, 32 pages, arXiv:0706.0469.
 
- Brunnemann J., Rideout D., Properties of the volume operator in loop quantum
  gravity. II. Detailed presentation, Classical Quantum Gravity
  25 (2008), 065002, 104 pages, arXiv:0706.0382.
 
- Brunnemann J., Thiemann T., Simplification of the spectral analysis of the
  volume operator in loop quantum gravity, Classical Quantum Gravity
  23 (2006), 1289-1346, gr-qc/0405060.
 
- Bruno N.R., Amelino-Camelia G., Kowalski-Glikman J., Deformed boost
  transformations that saturate at the Planck scale, Phys. Lett. B
  522 (2001), 133-138, hep-th/0107039.
 
- Cailleteau T., Mielczarek J., Barrau A., Grain J., Anomaly-free scalar
  perturbations with holonomy corrections in loop quantum cosmology,
  Classical Quantum Gravity 29 (2012), 095010, 17 pages,
  arXiv:1111.3535.
 
- Calcagni G., Observational effects from quantum cosmology, arXiv:1209.0473.
 
- Calcagni G., Hossain G.M., Loop quantum cosmology and tensor perturbations in
  the early universe, Adv. Sci. Lett. 2 (2009), 184-193,
  arXiv:0810.4330.
 
- Camacho A., Some consequences of a generalization to Heisenberg algebra in
  quantum electrodynamics, Internat. J. Modern Phys. D 12
  (2003), 1687-1692, gr-qc/0305052.
 
- Camacho A., White dwarfs as test objects of Lorentz violations,
  Classical Quantum Gravity 23 (2006), 7355-7368,
  gr-qc/0610073.
 
- Carlson C.E., Carone C.D., Zobin N., Noncommutative gauge theory without
  Lorentz violation, Phys. Rev. D 66 (2002), 075001, 8 pages,
  hep-th/0206035.
 
- Chaichian M., Kulish P.P., Nishijima K., Tureanu A., On a Lorentz-invariant
  interpretation of noncommutative space-time and its implications on
  noncommutative QFT, Phys. Lett. B 604 (2004), 98-102,
  hep-th/0408069.
 
- Chaichian M., Presnajder P., Sheikh-Jabbari M.M., Tureanu A.,
  Noncommutative gauge field theories: a no-go theorem, Phys. Lett. B
  526 (2002), 132-136, hep-th/0107037.
 
- Christian J., Testing quantum gravity via cosmogenic neutrino oscillations,
  Phys. Rev. D 71 (2005), 024012, 8 pages,
  gr-qc/0409077.
 
- Colladay D., Kostelecký A., Lorentz-violating extension of the standard
  model, Phys. Rev. D 58 (1998), 116002, 23 pages,
  hep-ph/9809521.
 
- Collins J., Perez A., Sudarsky D., Lorentz invariance violation and its role in
  quantum gravity phenomenology, in Approaches to Quantum Gravity: Toward a New
  Understanding of Space, Time and Matter, Editor D. Oriti, Cambridge
  University Press, Cambridge, 2009, 528-547, hep-th/0603002.
 
- Collins J., Perez A., Sudarsky D., Urrutia L., Vucetich H., Lorentz invariance
  and quantum gravity: an additional fine-tuning problem?, Phys. Rev.
  Lett. 93 (2004), 191301, 4 pages, gr-qc/0403053.
 
- Copeland E.J., Mulryne D.J., Nunes N.J., Shaeri M., Gravitational wave
  background from superinflation in loop quantum cosmology, Phys.
  Rev. D 79 (2009), 023508, 8 pages, arXiv:0810.0104.
 
- Corichi A., Black holes and entropy in loop quantum gravity: an overview,
  arXiv:0901.1302.
 
- Dapor A., Lewandowski J., Tavakoli Y., Lorentz symmetry in QFT on quantum
  Bianchi I space-time, Phys. Rev. D 86 (2012), 064013,
  14 pages, arXiv:1207.0671.
 
- De Pietri R., Rovelli C., Geometry eigenvalues and the scalar product from
  recoupling theory in loop quantum gravity, Phys. Rev. D 54
  (1996), 2664-2690, gr-qc/9602023.
 
- DeWitt B.S., Quantum theory of gravity. I. The canonical theory, Phys.
  Rev. 160 (1967), 1113-1148.
 
- Dittrich B., Thiemann T., Are the spectra of geometrical operators in loop
  quantum gravity really discrete?, J. Math. Phys. 50 (2009),
  012503, 11 pages, arXiv:0708.1721.
 
- Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime
  at the Planck scale and quantum fields, Comm. Math. Phys.
  172 (1995), 187-220, hep-th/0303037.
 
- Dupuis M., Livine E.R., Lifting SU(2) spin networks to projected spin networks,
  Phys. Rev. D 82 (2010), 064044, 11 pages,
  arXiv:1008.4093.
 
- Fairbairn W.J., Livine E.R., 3D spinfoam quantum gravity: matter as a phase
  of the group field theory, Classical Quantum Gravity 24
  (2007), 5277-5297, gr-qc/0702125.
 
- Filk T., Divergencies in a field theory on quantum space, Phys.
  Lett. B 376 (1996), 53-58.
 
- Fiore G., Wess J., On full twisted Poincaré symmetry and QFT on Moyal-Weyl
  spaces, Phys. Rev. D 75 (2007), 105022, 13 pages,
  hep-th/0701078.
 
- Freidel L., The geometry of momentum space, in preparation.
 
- Freidel L., Geiller M., Ziprick J., Continuous formulation of the loop quantum
  gravity phase space, arXiv:1110.4833.
 
- Freidel L., Kowalski-Glikman J., κ-Minkowski space, scalar field, and
  the issue of Lorentz invariance, arXiv:0710.2886.
 
- Freidel L., Kowalski-Glikman J., Nowak S., Field theory on
  κ-Minkowski space revisited: Noether charges and breaking of
  Lorentz symmetry, Internat. J. Modern Phys. A 23 (2008),
  2687-2718, arXiv:0706.3658.
 
- Freidel L., Livine E.R., Ponzano-Regge model revisited. III. Feynman
  diagrams and effective field theory, Classical Quantum Gravity
  23 (2006), 2021-2061, hep-th/0502106.
 
- Freidel L., Speziale S., Twisted geometries: a geometric parametrisation of
  SU(2) phase space, Phys. Rev. D 82 (2010), 084040,
  16 pages, arXiv:1001.2748.
 
- Freidel L., Starodubtsev A., Quantum gravity in terms of topological
  observables, hep-th/0501191.
 
- Galaverni M., Sigl G., Lorentz violation for photons and ultrahigh-energy
  cosmic rays, Phys. Rev. Lett. 100 (2008), 021102, 4 pages,
  arXiv:0708.1737.
 
- Gambini R., Pullin J., Nonstandard optics from quantum space-time,
  Phys. Rev. D 59 (1999), 124021, 4 pages,
  gr-qc/9809038.
 
- Gambini R., Pullin J., Rastgoo S., Quantum scalar field in quantum gravity: the
  propagator and Lorentz invariance in the spherically symmetric case,
  Gen. Relativity Gravitation 43 (2011), 3569-3592,
  arXiv:1105.0667.
 
- Gambini R., Rastgoo S., Pullin J., Small Lorentz violations in quantum
  gravity: do they lead to unacceptably large effects?, Classical
  Quantum Gravity 28 (2011), 155005, 6 pages, arXiv:1106.1417.
 
- Giesel K., Thiemann T., Consistency check on volume and triad operator
  quantization in loop quantum gravity. I, Classical Quantum Gravity
  23 (2006), 5667-5691, gr-qc/0507036.
 
- Giesel K., Thiemann T., Consistency check on volume and triad operator
  quantization in loop quantum gravity. II, Classical Quantum
  Gravity 23 (2006), 5693-5771, gr-qc/0507037.
 
- Girelli F., From quantum reference frames to deformed special relativity, in
  Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and
  Matter, Editor D. Oriti, Cambridge University Press, Cambridge, 2009,
  509-527, gr-qc/0607032.
 
- Girelli F., Snyder space-time: K-loop and Lie triple system, SIGMA
  6 (2010), 074, 19 pages, arXiv:1009.4762.
 
- Girelli F., Liberati S., Percacci R., Rahmede C., Modified dispersion relations
  from the renormalization group of gravity, Classical Quantum Gravity
  24 (2007), 3995-4008, gr-qc/0607030.
 
- Girelli F., Liberati S., Sindoni L., Planck-scale modified dispersion relations
  and Finsler geometry, Phys. Rev. D 75 (2007), 064015,
  9 pages, gr-qc/0611024.
 
- Girelli F., Livine E.R., Physics of deformed special relativity: relativity
  principle revisited, gr-qc/0412004.
 
- Girelli F., Livine E.R., Scalar field theory in Snyder space-time:
  alternatives, J. High Energy Phys. 2011 (2011), no. 3, 132,
  31 pages, arXiv:1004.0621.
 
- Girelli F., Livine E.R., Oriti D., Four-dimensional deformed special relativity
  from group field theories, Phys. Rev. D 81 (2010), 024015,
  14 pages, arXiv:0903.3475.
 
- Girelli F., Poulin D., Quantum reference frames and deformed symmetries,
  Phys. Rev. D 77 (2008), 104012, 11 pages,
  arXiv:0710.4393.
 
- Gleiser R.J., Kozameh C.N., Astrophysical limits on quantum gravity motivated
  birefringence, Phys. Rev. D 64 (2001), 083007, 4 pages,
  gr-qc/0102093.
 
- Grain J., Barrau A., Cosmological footprints of loop quantum gravity,
  Phys. Rev. Lett. 102 (2009), 081301, 4 pages,
  arXiv:0902.0145.
 
- Grain J., Barrau A., Cailleteau T., Mielczarek J., Observing the big bounce
  with tensor modes in the cosmic microwave background: phenomenology and
  fundamental loop quantum cosmology parameters, Phys. Rev. D
  82 (2010), 123520, 12 pages, arXiv:1011.1811.
 
- Grain J., Cailleteau T., Barrau A., Gorecki A., Fully
  loop-quantum-cosmology-corrected propagation of gravitational waves during
  slow-roll inflation, Phys. Rev. D 81 (2010), 024040,
  7 pages, arXiv:0910.2892.
 
- Gregg M., Major S.A., On modified dispersion relations and the Chandrasekhar
  mass limit, Internat. J. Modern Phys. D 18 (2009),
  971-982, arXiv:0806.3496.
 
- Groenewold H.J., On the principles of elementary quantum mechanics,
  Physica 12 (1946), 405-460.
 
- Groot Nibbelink S., Pospelov M., Lorentz violation in supersymmetric field
  theories, Phys. Rev. Lett. 94 (2005), 081601, 4 pages,
  hep-ph/0404271.
 
- Grosse H., Wohlgenannt M., On κ-deformation and UV/IR mixing,
  Nuclear Phys. B 748 (2006), 473-484,
  hep-th/0507030.
 
- Grosse H., Wulkenhaar R., Progress in solving a noncommutative quantum field
  theory in four dimensions, arXiv:0909.1389.
 
- Grot N., Rovelli C., Moduli-space structure of knots with intersections,
  J. Math. Phys. 37 (1996), 3014-3021,
  gr-qc/9604010.
 
- Gubitosi G., Genovese G., Amelino-Camelia G., Melchiorri A., Planck-scale
  modifications to electrodynamics characterized by a spacelike
  symmetry-breaking vector, Phys. Rev. D 82 (2010), 024013,
  8 pages, arXiv:1003.0878.
 
- Gubitosi G., Mercati F., Relative locality in κ-Poincaré,
  arXiv:1106.5710.
 
- Gurau R., Magnen J., Rivasseau V., Tanasa A., A translation-invariant
  renormalizable non-commutative scalar model, Comm. Math. Phys.
  287 (2009), 275-290, arXiv:0802.0791.
 
- Heisenberg W., Über die in der Theorie der Elementarteilchen auftretende
  universelle Länge, Ann. Phys. 424 (1938), 20-33.
 
- Heyman D., Major S.A., Hinteleitner F., Reaction thresholds in doubly special
  relativity, Phys. Rev. D 69 (2004), 105016, 8 pages,
  gr-qc/0312089.
 
- Hinchliffe I., Kersting N., Ma Y.L., Review of the phenomenology of
  noncommutative geometry, Internat. J. Modern Phys. A 19
  (2004), 179-204, hep-ph/0205040.
 
- Hinterleitner F., Remarks on doubly special relativity theories and gravity,
  Classical Quantum Gravity 25 (2008), 075018, 11 pages,
  arXiv:0706.0471.
 
- Hossenfelder S., A note on theories with a minimal length, Classical
  Quantum Gravity 23 (2006), 1815-1821, hep-th/0510245.
 
- Hossenfelder S., Bounds on an energy-dependent and observer-independent speed
  of light from violations of locality, Phys. Rev. Lett. 104
  (2010), 071301, 4 pages, arXiv:1004.0418.
 
- Hossenfelder S., Interpretation of quantum field theories with a minimal length
  scale, Phys. Rev. D 73 (2006), 105013, 9 pages,
  hep-th/0603032.
 
- Hossenfelder S., Minimal length scale scenarios for quantum gravity,
  arXiv:1203.6191.
 
- Hossenfelder S., The box-problem in deformed special relativity,
  arXiv:0912.0090.
 
- Hossenfelder S., Modesto L., Prémont-Schwarz I., Emission spectra of
  self-dual black holes, arXiv:1202.0412.
 
- Husain V., Major S.A., Gravity and BF theory defined in bounded regions,
  Nuclear Phys. B 500 (1997), 381-401,
  gr-qc/9703043.
 
- Jacob U., Mercati F., Amelino-Camelia G., Piran T., Modifications to Lorentz
  invariant dispersion in relatively boosted frames, Phys. Rev. D
  82 (2010), 084021, 11 pages, arXiv:1004.0575.
 
- Jacobson T., Liberati S., Mattingly D., Astrophysical bounds on Planck
  suppressed Lorentz violation, in Planck Scale Efffects in Astrophysics and
  Cosmology, Lecture Notes in Phys., Vol. 669, Springer, Berlin, 2005,
  101-130, hep-ph/0407370.
 
- Jacobson T., Liberati S., Mattingly D., Threshold effects and Planck scale
  Lorentz violation: combined constraints from high energy astrophysics,
  Phys. Rev. D 67 (2003), 124011, 26 pages,
  hep-ph/0209264.
 
- Jacobson T., Liberati S., Mattingly D., Lorentz violation at high energy:
  concepts, phenomena and astrophysical constraints, Ann. Physics
  321 (2006), 150-196, astro-ph/0505267.
 
- Jacobson T., Liberati S., Mattingly D., Stecker F.W., New limits on Planck
  scale Lorentz violation in QED, Phys. Rev. Lett. 93 (2004),
  021101, 4 pages, astro-ph/0309681.
 
- Joung E., Mourad J., Noui K., Three dimensional quantum geometry and deformed
  symmetry, J. Math. Phys. 50 (2009), 052503, 29 pages,
  arXiv:0806.4121.
 
- Jurco B., Schraml S., Schupp P., Wess J., Enveloping algebra-valued gauge
  transformations for non-abelian gauge groups on non-commutative spaces,
  Eur. Phys. J. C 17 (2000), 521-526,
  hep-th/0006246.
 
- Kelley J.L., Searching for quantum gravity with neutrino telescopes,
  PoS Proc. Sci.  (2007), PoS(QG-Ph), 022, 14 pages.
 
- Kempf A., Mangano G., Mann R.B., Hilbert space representation of the minimal
  length uncertainty relation, Phys. Rev. D 52 (1995),
  1108-1118, hep-th/9412167.
 
- Kodama H., Holomorphic wave function of the Universe, Phys. Rev. D
  42 (1990), 2548-2565.
 
- Kodama H., Specialization of Ashtekar's formalism to Bianchi cosmology,
  Progr. Theoret. Phys. 80 (1988), 1024-1040.
 
- Konopka T., Major S.A., Observational limits on quantum geometry effects,
  New J. Phys. 4 (2002), 57, 18 pages,
  hep-ph/0201184.
 
- Kostelecký A. (Editor), Proceedings of the Second Meeting on CPT and Lorentz
  Symmetry, World Scientific Publishing Co. Inc., River Edge, NJ, 2002.
 
- Kostelecký A., Mewes M., Electrodynamics with Lorentz-violating operators of
  arbitrary dimension, Phys. Rev. D 80 (2009), 015020,
  59 pages, arXiv:0905.0031.
 
- Kostelecký A., Russell N., Data tables for Lorentz and CPT violation,
  Rev. Modern Phys. 83 (2011), 11-31, arXiv:0801.0287.
 
- Kowalski-Glikman J., Doubly special relativity: facts and prospects, in
  Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and
  Matter, Editor D. Oriti, Cambridge University Press, Cambridge, 2009,
  493-508, gr-qc/0603022.
 
- Kowalski-Glikman J., Planck-scale relativity from quantum
  κ-Poincaré algebra, Modern Phys. Lett. A 17
  (2002), 1-12, hep-th/0107054.
 
- Kowalski-Glikman J., Nowak S., Doubly special relativity theories as different
  bases of κ-Poincaré algebra, Phys. Lett. B 539
  (2002), 126-132, hep-th/0203040.
 
- Kowalski-Glikman J., Starodubtsev A., Effective particle kinematics from
  quantum gravity, Phys. Rev. D 78 (2008), 084039, 10 pages,
  arXiv:0808.2613.
 
- Kozameh C.N., Parisi F., Lorentz invariance and the semiclassical approximation
  of loop quantum gravity, Classical Quantum Gravity 21
  (2004), 2617-2621, gr-qc/0310014.
 
- Krasnov K., Geometrical entropy from loop quantum gravity, Phys.
  Rev. D 55 (1997), 3505-3513.
 
- Krasnov K., The area spectrum in quantum gravity, Classical Quantum
  Gravity 15 (1998), L47-L53, gr-qc/9803074.
 
- Krasnov K., Rovelli C., Black holes in full quantum gravity, Classical
  Quantum Gravity 26 (2009), 245009, 8 pages, arXiv:0905.4916.
 
- Laurent P., Götz D., Binétruy P., Covino S., Fernandez-Soto A., Constraints
  on Lorentz invariance violation using integral/IBIS observations of
  GRB041219A, Phys. Rev. D 83 (2011), 121301, 5 pages,
  arXiv:1106.1068.
 
- Lewandowski J., Volume and quantizations, Classical Quantum Gravity
  14 (1997), 71-76, gr-qc/9602035.
 
- Liberati S., Maccione L., Lorentz violation: motivation and new constraints,
  Ann. Rev. Nuclear Part. Sci. 59 (2009), 245-267,
  arXiv:0906.0681.
 
- Liberati S., Maccione L., Quantum gravity phenomenology: achievements and
  challenges, J. Phys. Conf. Ser. 314 (2011), 012007,
  10 pages, arXiv:1105.6234.
 
- Liberati S., Sonego S., Visser M., Interpreting doubly special relativity as a
  modified theory of measurement, Phys. Rev. D 71 (2005),
  045001, 9 pages, gr-qc/0410113.
 
- Livine E.R., Boucles et mousses de spin en gravite quantique: une approche
  covariante à la quantification non-perturbative de la relativité
  générale, Ph.D. thesis, Centre de Physique Theorique, 2003.
 
- Livine E.R., Oriti D., About Lorentz invariance in a discrete quantum
  setting, J. High Energy Phys. 2004 (2004), no. 6, 050,
  36 pages, gr-qc/0405085.
 
- Loll R., Spectrum of the volume operator in quantum gravity, Nuclear
  Phys. B 460 (1996), 143-154, gr-qc/9511030.
 
- Loll R., Volume operator in discretized quantum gravity, Phys. Rev.
  Lett. 75 (1995), 3048-3051, gr-qc/9506014.
 
- Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., q-deformation of
  Poincaré algebra, Phys. Lett. B 264 (1991), 331-338.
 
- Ma Y., Soo C., Yang J., New length operator for loop quantum gravity,
  Phys. Rev. D 81 (2010), 124026, 9 pages,
  arXiv:1004.1063.
 
- Maccione L., Liberati S., Celotti A., Kirk J.G., New constraints on
  Planck-scale Lorentz violation in QED from the Crab Nebula,
  J. Cosmol. Astropart. Phys. 2007 (2007), no. 10, 013,
  24 pages, arXiv:0707.2673.
 
- Maccione L., Liberati S., Celotti A., Kirk J.G., Ubertini P., γ-ray
  polarization constraints on Planck scale violations of special relativity,
  Phys. Rev. D 78 (2008), 103003, 5 pages,
  arXiv:0809.0220.
 
- Maccione L., Taylor A.M., Mattingly D., Liberati S., Planck-scale Lorentz
  violation constrained by ultra-high-energy cosmic rays, J. Cosmol.
  Astropart. Phys. 2009 (2009), no. 4, 022, 21 pages,
  arXiv:0902.1756.
 
- Maggiore M., Quantum groups, gravity, and the generalized uncertainty
  principle, Phys. Rev. D 49 (1994), 5182-5187,
  hep-th/9305163.
 
- Maggiore M., The algebraic structure of the generalized uncertainty principle,
  Phys. Lett. B 319 (1993), 83-86, hep-th/9309034.
 
- Magueijo J., Benincasa D.M.T., Chiral vacuum fluctuations in quantum gravity,
  Phys. Rev. Lett. 106 (2011), 121302, 4 pages,
  arXiv:1010.3552.
 
- Magueijo J., Bethke L., New ground state for quantum gravity,
  arXiv:1207.0637.
 
- Magueijo J., Smolin L., Generalized Lorentz invariance with an invariant
  energy scale, Phys. Rev. D 67 (2003), 044017, 12 pages,
  gr-qc/0207085.
 
- Magueijo J., Smolin L., Gravity's rainbow, Classical Quantum Gravity
  21 (2004), 1725-1736, gr-qc/0305055.
 
- Magueijo J., Smolin L., Lorentz invariance with an invariant energy scale,
  Phys. Rev. Lett. 88 (2002), 190403, 4 pages,
  hep-th/0112090.
 
- Majid S., Foundations of quantum group theory, Cambridge University Press,
  Cambridge, 1995.
 
- Majid S., On q-regularization, Internat. J. Modern Phys. A
  5 (1990), 4689-4696.
 
- Majid S., Ruegg H., Bicrossproduct structure of κ-Poincaré group
  and non-commutative geometry, Phys. Lett. B 334 (1994),
  348-354, hep-th/9405107.
 
- Major S.A., Embedded graph invariants in Chern-Simons theory,
  Nuclear Phys. B 550 (1999), 531-560,
  hep-th/9810071.
 
- Major S.A., On the q-quantum gravity loop algebra, Classical
  Quantum Gravity 25 (2008), 065003, 9 pages, arXiv:0708.0750.
 
- Major S.A., Operators for quantized directions, Classical Quantum
  Gravity 16 (1999), 3859-3877, gr-qc/9905019.
 
- Major S.A., q-quantum gravity, Ph.D. thesis, The Pennsylvania State
  University, 1997.
 
- Major S.A., Quantum geometry phenomenology: angle and semiclassical states,
  J. Phys. Conf. Ser. 360 (2012), 012061, 4 pages,
  arXiv:1112.4366.
 
- Major S.A., Shape in an atom of space: exploring quantum geometry
  phenomenology, Classical Quantum Gravity 27 (2010), 225012,
  16 pages, arXiv:1005.5460.
 
- Major S.A., Seifert M.D., Modelling space with an atom of quantum geometry,
  Classical Quantum Gravity 19 (2002), 2211-2227,
  gr-qc/0109056.
 
- Major S.A., Smolin L., Quantum deformation of quantum gravity, Nuclear
  Phys. B 473 (1996), 267-290, gr-qc/9512020.
 
- Mattingly D., Have we tested Lorentz invariance enough?, arXiv:0802.1561.
 
- Mattingly D., Modern tests of Lorentz invariance, Living Rev.
  Relativity 8 (2005), 5, 84 pages, gr-qc/0502097.
 
- Mattingly D.M., Maccione L., Galaverni M., Liberati S., Sigl G., Possible
  cosmogenic neutrino constraints on Planck-scale Lorentz violation,
  J. Cosmol. Astropart. Phys. 2010 (2010), no. 2, 007,
  20 pages, arXiv:0911.0521.
 
- Matusis A., Susskind L., Toumbas N., The IR/UV connection in the noncommutative
  gauge theories, J. High Energy Phys. 2000 (2000), no. 12,
  002, 18 pages, hep-th/0002075.
 
- Meissner K.A., Black-hole entropy in loop quantum gravity, Classical
  Quantum Gravity 21 (2004), 5245-5251, gr-qc/0407052.
 
- Meissner K.A., Eigenvalues of the volume operator in loop quantum gravity,
  Classical Quantum Gravity 23 (2006), 617-625,
  gr-qc/0509049.
 
- Meusburger C., Schroers B.J., Generalised Chern-Simons actions for 3d
  gravity and κ-Poincaré symmetry, Nuclear Phys. B
  806 (2009), 462-488, arXiv:0805.3318.
 
- Mielczarek J., Gravitational waves from the big bounce, J. Cosmol.
  Astropart. Phys. 2008 (2008), no. 11, 011, 17 pages,
  arXiv:0807.0712.
 
- Mielczarek J., Possible observational effects of loop quantum cosmology,
  Phys. Rev. D 81 (2010), 063503, 12 pages,
  arXiv:0908.4329.
 
- Mielczarek J., Tensor power spectrum with holonomy corrections in LQC,
  Phys. Rev. D 79 (2009), 123520, 13 pages,
  arXiv:0902.2490.
 
- Mielczarek J., Cailleteau T., Barrau A., Grain J., Anomaly-free vector
  perturbations with holonomy corrections in loop quantum cosmology,
  arXiv:1106.3744.
 
- Mielczarek J., Cailleteau T., Grain J., Barrau A., Inflation in loop quantum
  cosmology: dynamics and spectrum of gravitational waves, Phys.
  Rev. D 81 (2010), 104049, 11 pages, arXiv:1003.4660.
 
- Minwalla S., Van Raamsdonk M., Seiberg N., Noncommutative perturbative
  dynamics, J. High Energy Phys. 2000 (2000), no. 2, 020,
  31 pages, hep-th/9912072.
 
- Modesto L., Prémont-Schwarz I., Self-dual black holes in LQG: theory and
  phenomenology, Phys. Rev. D 80 (2009), 064041, 17 pages,
  arXiv:0905.3170.
 
- Moyal J.E., Quantum mechanics as a statistical theory, Proc. Cambridge
  Philos. Soc. 45 (1949), 99-124.
 
- Myers R.C., Pospelov M., Ultraviolet modifications of dispersion relations in
  effective field theory, Phys. Rev. Lett. 90 (2003), 211601,
  4 pages, hep-ph/0301124.
 
- Oeckl R., Braided quantum field theory, Comm. Math. Phys. 217
  (2001), 451-473, hep-th/9906225.
 
- Oeckl R., Untwisting noncommutative Rd and the equivalence of
  quantum field theories, Nuclear Phys. B 581 (2000),
  559-574, hep-th/0003018.
 
- Percival I.C., Strunz W.T., Detection of spacetime fluctuations by a model
  interferometer, Proc. Roy. Soc. London. Ser. A 453 (1997),
  431-446, quant-ph/9607011.
 
- Perez A., Introduction to loop quantum gravity and spin foams,
  gr-qc/0409061.
 
- Pfeifer C., Wohlfarth M.N.R., Causal structure and electrodynamics on Finsler
  spacetimes, Phys. Rev. D 84 (2011), 044039, 14 pages,
  arXiv:1104.1079.
 
- Pinzul A., Twisted Poincaré group and spin-statistics, Internat. J.
  Modern Phys. A 20 (2005), 6268-6277.
 
- Podles P., Woronowicz S.L., On the classification of quantum Poincaré
  groups, Comm. Math. Phys. 178 (1996), 61-82,
  hep-th/9412059.
 
- Polchinski J., Comment on "Small Lorentz violations in quantum gravity: do
  they lead to unacceptably large effects?", arXiv:1106.6346.
 
- Poulin D., Yard J., Dynamics of a quantum reference frame, New J.
  Phys. 9 (2007), no. 5, 156, 17 pages, quant-ph/0612126.
 
- Randono A.C., In search of quantum de Sitter space: generalizing the Kodama
  state, Ph.D. thesis, University of Texas at Austin, 2007, arXiv:0709.2905.
 
- Rätzel D., Rivera S., Schuller F.P., Geometry of physical dispersion
  relations, Phys. Rev. D 83 (2011), 044047, 23 pages,
  arXiv:1010.1369.
 
- Rodríguez-Romo S., Some examples of q-regularization,
  Internat. J. Theoret. Phys. 34 (1995), 2179-2193,
  hep-th/9508019.
 
- Roth M. et al. (Auger Collaboration), Measurement of the UHECR energy spectrum
  using data from the surface detector of the Pierre Auger observatory,
  arXiv:0706.2096.
 
- Rovelli C., A generally covariant quantum field theory and a prediction on
  quantum measurements of geometry, Nuclear Phys. B 405
  (1993), 797-815.
 
- Rovelli C., A new look at loop quantum gravity, Classical Quantum
  Gravity 28 (2011), 114005, 24 pages, arXiv:1004.1780.
 
- Rovelli C., Black hole entropy from loop quantum gravity, Phys. Rev.
  Lett. 77 (1996), 3288-3291, gr-qc/9603063.
 
- Rovelli C., Comment on "Are the spectra of geometrical operators in loop
  quantum gravity really discrete?" by B. Dittrich and T. Thiemann,
  arXiv:0708.2481.
 
- Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics,
  Cambridge University Press, Cambridge, 2004.
 
- Rovelli C., Zakopane lectures on loop gravity, arXiv:1102.3660.
 
- Rovelli C., Smolin L., Discreteness of area and volume in quantum gravity,
  Nuclear Phys. B 442 (1995), 593-619, Erratum,
  Nuclear
  Phys. B 456 (1995), 753-754, gr-qc/9411005.
 
- Rovelli C., Speziale S., Lorentz covariance of loop quantum gravity,
  Phys. Rev. D 83 (2011), 104029, 6 pages,
  arXiv:1012.1739.
 
- Rovelli C., Speziale S., Reconcile Planck-scale discreteness and the
  Lorentz-Fitzgerald contraction, Phys. Rev. D 67
  (2003), 064019, 11 pages, gr-qc/0205108.
 
- Rubtsov G.I. et al., Upper limit on the ultrahigh-energy photon flux from
  AGASA and Yakutsk data, Phys. Rev. D 73 (2006), 063009,
  8 pages, astro-ph/0601449.
 
- Sahlmann H., Loop quantum gravity - a short review, arXiv:1001.4188.
 
- Sahlmann H., Thiemann T., Towards the QFT on curved spacetime limit of QGR.
  I. A general scheme, Classical Quantum Gravity 23
  (2006), 867-908, gr-qc/0207030.
 
- Sahlmann H., Thiemann T., Towards the QFT on curved spacetime limit of QGR.
  II. A concrete implementation, Classical Quantum Gravity
  23 (2006), 909-954, gr-qc/0207031.
 
- Sakellariadou M., Lattice refinement in loop quantum cosmology,
  J. Phys. Conf. Ser. 189 (2009), 012035, 17 pages,
  arXiv:0810.5356.
 
- Sakellariadou M., Phenomenology of loop quantum cosmology, J. Phys.
  Conf. Ser. 222 (2010), 012027, 16 pages, arXiv:1001.0161.
 
- Saveliev A., Maccione L., Sigl G., Lorentz invariance violation and chemical
  composition of ultra high energy cosmic rays, J. Cosmol. Astropart.
  Phys. 2011 (2011), no. 3, 046, 18 pages, arXiv:1101.2903.
 
- Schuller F.P., All spacetimes beyond Einstein (Obergurgl lectures),
  arXiv:1111.4824.
 
- Seifert M., Angle and volume studies in quantized space, B.A. Thesis,
  Swarthmore College, Swarthmore, 2001, gr-qc/0108047.
 
- Sheikh-Jabbari M.M., Renormalizability of the supersymmetric Yang-Mills
  theories on the noncommutative torus, J. High Energy Phys.
  1999 (1999), no. 6, 015, 16 pages, hep-th/9903107.
 
- Sitarz A., Noncommutative differential calculus on the κ-Minkowski
  space, Phys. Lett. B 349 (1995), 42-48,
  hep-th/9409014.
 
- Skákala J., Visser M., Pseudo-Finslerian space-times and
  multirefringence, Internat. J. Modern Phys. D 19 (2010),
  1119-1146, arXiv:0806.0950.
 
- Smolin L., Classical paradoxes of locality and their possible quantum
  resolutions in deformed special relativity, Gen. Relativity
  Gravitation 43 (2011), 3671-3691, arXiv:1004.0664.
 
- Smolin L., Could deformed special relativity naturally arise from the
  semiclassical limit of quantum gravity?, arXiv:0808.3765.
 
- Smolin L., Falsifiable predictions from semiclassical quantum gravity,
  Nuclear Phys. B 742 (2006), 142-157,
  hep-th/0501091.
 
- Smolin L., On limitations of the extent of inertial frames in non-commutative
  spacetimes, arXiv:1007.0718.
 
- Smolin L., Quantum gravity with a positive cosmological constant,
  hep-th/0209079.
 
- Smolin L., Soo C., The Chern-Simons invariant as the natural time variable
  for classical and quantum cosmology, Nuclear Phys. B 449
  (1995), 289-314, gr-qc/9405015.
 
- Smolin L., Starodubtsev A., General relativity with a topological phase: an
  action principle, hep-th/0311163.
 
- Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947),
  38-41.
 
- Starodubtsev A., Topological excitations around the vacuum of quantum gravity
  I: The symmetries of the vacuum, hep-th/0306135.
 
- Stecker F.W., A new limit on Planck scale Lorentz violation from γ-ray
  burst polarization, Astropart. Phys. 35 (2011), 95-97,
  arXiv:1102.2784.
 
- Thiemann T., A length operator for canonical quantum gravity, J. Math.
  Phys. 39 (1998), 3372-3392, gr-qc/9606092.
 
- Thiemann T., Closed formula for the matrix elements of the volume operator in
  canonical quantum gravity, J. Math. Phys. 39 (1998),
  3347-3371, gr-qc/9606091.
 
- Thiemann T., Lectures on loop quantum gravity, in Quantum Gravity,
  Lecture Notes in Phys., Vol. 631, Springer, Berlin, 2003, 41-135,
  gr-qc/0210094.
 
- Thiemann T., Loop quantum gravity: an inside view, in Approaches to Fundamental
  Physics, Lecture Notes in Phys., Vol. 721, Springer, Berlin, 2007,
  185-263, hep-th/0608210.
 
- Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs
  on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
 
- Thiemann T., Quantum spin dynamics (QSD), Classical Quantum Gravity
  15 (1998), 839-873, gr-qc/9606089.
 
- Ungar A.A., Thomas precession and its associated grouplike structure,
  Amer. J. Phys. 59 (1991), 824-834.
 
- Wang C.H.T., Bingham R., Mendonça J.T., Quantum gravitational decoherence
  of matter waves, Classical Quantum Gravity 23 (2006),
  L59-L65, gr-qc/0603112.
 
- Wilson-Ewing E., Holonomy corrections in the effective equations for scalar
  mode perturbations in loop quantum cosmology, Classical Quantum
  Gravity 29 (2012), 085005, 19 pages, arXiv:1108.6265.
 
- Wu J., Ling Y., The cosmological perturbation theory in loop cosmology with
  holonomy corrections, J. Cosmol. Astropart. Phys. 2010
  (2010), no. 5, 026, 15 pages, arXiv:1001.1227.
 
- Yonetoku D. et al., Detection of gamma-ray polarization in prompt emission of
  GRB 100826A, Astrophys. J. Lett. 743 (2011), L30-L34,
  arXiv:1111.1779.
 
- Young C.A.S., Zegers R., Covariant particle statistics and intertwiners of the
  κ-deformed Poincaré algebra, Nuclear Phys. B
  797 (2008), 537-549, arXiv:0711.2206.
 
- Young C.A.S., Zegers R., On κ-deformation and triangular
  quasibialgebra structure, Nuclear Phys. B 809 (2009),
  439-451, arXiv:0807.2745.
 
- Zapata J.A., A combinatorial approach to diffeomorphism invariant quantum gauge
  theories, J. Math. Phys. 38 (1997), 5663-5681,
  gr-qc/9703037.
 
- Zapata J.A., Combinatorial space from loop quantum gravity, Gen.
  Relativity Gravitation 30 (1998), 1229-1245,
  gr-qc/9703038.
 
 
 | 
 |