| 
 SIGMA 8 (2012), 106, 21 pages      arXiv:1212.6475     
https://doi.org/10.3842/SIGMA.2012.106 
Contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants and Applications” 
Nonlocal Symmetries, Telescopic Vector Fields and  λ-Symmetries of Ordinary Differential Equations
Concepción Muriel and Juan Luis Romero
 Department of Mathematics, University of Cádiz, 11510 Puerto Real, Spain
 
 
Received July 09, 2012, in final form December 19, 2012; Published online December 28, 2012 
Abstract
 
This paper studies relationships between the order
reductions of ordinary differential equations derived by the
existence of λ-symmetries, telescopic vector fields and some
nonlocal symmetries obtained by embedding the equation in an
auxiliary system.
The results let us connect such nonlocal
symmetries with approaches that had been previously introduced: the
exponential vector fields and the λ-coverings method.
The
λ-symmetry approach let us characterize the nonlocal
symmetries that are useful to reduce the order and provides an
alternative method of computation that involves less unknowns.
The notion of equivalent λ-symmetries
is used to decide whether or not reductions associated to two
nonlocal symmetries are strictly different.
  
 Key words:
nonlocal symmetries; λ-symmetries; telescopic vector fields; order reductions; differential invariants. 
pdf (477 kb)  
tex (30 kb)
 
 
References
 
- Abraham-Shrauner B., Hidden symmetries and nonlocal group generators for
  ordinary differential equations, IMA J. Appl. Math. 56
  (1996), 235-252.
 
- Abraham-Shrauner B., Hidden symmetries, first integrals and reduction of order
  of nonlinear ordinary differential equations, J. Nonlinear Math.
  Phys. 9 (2002), suppl. 2, 1-9.
 
- Abraham-Shrauner B., Govinder K.S., Leach P.G.L., Integration of second order
  ordinary differential equations not possessing Lie point symmetries,
  Phys. Lett. A 203 (1995), 169-174.
 
- Abraham-Shrauner B., Guo A., Hidden and nonlocal symmetries of nonlinear
  differential equations, in Modern Group Analysis: Advanced Analytical and
  computational Methods in Mathematical Physics (Acireale, 1992), Kluwer
  Acad. Publ., Dordrecht, 1993, 1-5.
 
- Abraham-Shrauner B., Leach P.G.L., Hidden symmetries of nonlinear ordinary
  differential equations, in Exploiting Symmetry in Applied and Numerical
  Analysis (Fort Collins, CO, 1992), Lectures in Appl. Math.,
  Vol. 29, Amer. Math. Soc., Providence, RI, 1993, 1-10.
 
- Abraham-Shrauner B., Leach P.G.L., Govinder K.S., Ratcliff G., Hidden and
  contact symmetries of ordinary differential equations, J. Phys. A:
  Math. Gen. 28 (1995), 6707-6716.
 
- Adam A.A., Mahomed F.M., Integration of ordinary differential equations via
  nonlocal symmetries, Nonlinear Dynam. 30 (2002), 267-275.
 
- Ballesteros Á., Enciso A., Herranz F.J., Ragnisco O., A maximally
  superintegrable system on an n-dimensional space of nonconstant
  curvature, Phys. D 237 (2008), 505-509,
  math-ph/0612080.
 
- Bhuvaneswari A., Kraenkel R.A., Senthilvelan M., Application of the
  λ-symmetries approach and time independent integral of the modified
  Emden equation, Nonlinear Anal. Real World Appl. 13
  (2012), 1102-1114.
 
- Bhuvaneswari A., Kraenkel R.A., Senthilvelan M., Lie point symmetries and the
  time-independent integral of the damped harmonic oscillator, Phys.
  Scr. 83 (2011), 055005, 5 pages.
 
- Bruzon M.S., Gandarias M.L., Senthilvelan M., On the nonlocal symmetries of
  certain nonlinear oscillators and their general solution, Phys.
  Lett. A 375 (2011), 2985-2987.
 
- Catalano Ferraioli D., Nonlocal aspects of λ-symmetries and ODEs
  reduction, J. Phys. A: Math. Theor. 40 (2007), 5479-5489,
  math-ph/0702039.
 
- Catalano-Ferraioli D., Nonlocal interpretation of λ-symmetries, in
  Proceedings of the International Conference "Symmetry and Perturbation
  Theory" (Otranto, Italy, 2007), Editors G. Gaeta, S. Walcher, R. Vitolo,
  World Scientific, Singapore, 2008, 241-242.
 
- Catalano Ferraioli D., Morando P., Local and nonlocal solvable structures in
  the reduction of ODEs, J. Phys. A: Math. Theor. 42
  (2009), 035210, 15 pages, arXiv:0807.3276.
 
- Cicogna G., Reduction of systems of first-order differential equations via
  Λ-symmetries, Phys. Lett. A 372 (2008),
  3672-3677, arXiv:0802.3581.
 
- Cicogna G., Gaeta G., Noether theorem for μ-symmetries,
  J. Phys. A: Math. Theor. 40 (2007), 11899-11921,
  arXiv:0708.3144.
 
- Eisenhart L.P., Continuous groups of transformations, Dover Publications Inc.,
  New York, 1961.
 
- Gaeta G., Morando P., On the geometry of lambda-symmetries and PDE reduction,
  J. Phys. A: Math. Gen. 37 (2004), 6955-6975,
  math-ph/0406051.
 
- Gandarias M.L., Nonlocal symmetries and reductions for some ordinary
  differential equations, Theoret. Math. Phys. 159 (2009),
  779-786.
 
- Gandarias M.L., Bruzón M.S., Reductions for some ordinary differential
  equations through nonlocal symmetries, J. Nonlinear Math. Phys.
  18 (2011), suppl. 1, 123-133.
 
- González-Gascón F., González-López A., Newtonian systems of
  differential equations, integrable via quadratures, with trivial group of
  point symmetries, Phys. Lett. A 129 (1988), 153-156.
 
- González-López A., Symmetry and integrability by quadratures of
  ordinary differential equations, Phys. Lett. A 133 (1988),
  190-194.
 
- Govinder K.S., Leach P.G.L., A group-theoretic approach to a class of
  second-order ordinary differential equations not possessing Lie point
  symmetries, J. Phys. A: Math. Gen. 30 (1997), 2055-2068.
 
- Govinder K.S., Leach P.G.L., On the determination of non-local symmetries,
  J. Phys. A: Math. Gen. 28 (1995), 5349-5359.
 
- Levi D., Rodríguez M.A., λ-symmetries for discrete equations,
  J. Phys. A: Math. Theor. 43 (2010), 292001, 9 pages,
  arXiv:1004.4808.
 
- Mathews P.M., Lakshmanan M., On a unique nonlinear oscillator, Quart.
  Appl. Math. 32 (1974), 215-218.
 
- Morando P., Deformation of Lie derivative and μ-symmetries,
  J. Phys. A: Math. Theor. 40 (2007), 11547-11559.
 
- Muriel C., Romero J.L., C∞-symmetries and integrability of ordinary
  differential equations, in Proceedings of the I Colloquium on Lie
  Theory and Applications (Vigo, 2000), Colecc. Congr., Vol. 35,
  Univ. Vigo, Vigo, 2002, 143-150.
 
- Muriel C., Romero J.L., C∞-symmetries and non-solvable symmetry
  algebras, IMA J. Appl. Math. 66 (2001), 477-498.
 
- Muriel C., Romero J.L., C∞-symmetries and reduction of equations
  without Lie point symmetries, J. Lie Theory 13 (2003),
  167-188.
 
- Muriel C., Romero J.L., First integrals, integrating factors and
  λ-symmetries of second-order differential equations,
  J. Phys. A: Math. Theor. 42 (2009), 365207, 17 pages.
 
- Muriel C., Romero J.L., Integrating factors and λ-symmetries,
  J. Nonlinear Math. Phys. 15 (2008), suppl. 3, 300-309.
 
- Muriel C., Romero J.L., λ-symmetries on the derivation of first
  integrals of ordinary differential equations, in Proceedings "WASCOM
  2009" 15th Conference on Waves and Stability in Continuous Media,
  World Sci. Publ., Hackensack, NJ, 2010, 303-308.
 
- Muriel C., Romero J.L., New methods of reduction for ordinary differential
  equations, IMA J. Appl. Math. 66 (2001), 111-125.
 
- Muriel C., Romero J.L., Nonlocal transformations and linearization of
  second-order ordinary differential equations, J. Phys. A: Math.
  Theor. 43 (2010), 434025, 13 pages.
 
- Muriel C., Romero J.L., Prolongations of vector fields and the property of the
  existence of invariants obtained by differentiation, Theoret. Math.
  Phys. 133 (2002), 1565-1575.
 
- Muriel C., Romero J.L., Second-order ordinary differential equations and first
  integrals of the form A(t,x)x'+B(t,x), J. Nonlinear Math.
  Phys. 16 (2009), suppl. 1, 209-222.
 
- Muriel C., Romero J.L., Olver P.J., Variational C∞-symmetries and
  Euler-Lagrange equations, J. Differential Equations
  222 (2006), 164-184.
 
- Nucci M.C., Lie symmetries of a Painlevé-type equation without Lie
  symmetries, J. Nonlinear Math. Phys. 15 (2008), 205-211.
 
- Nucci M.C., Leach P.G.L., The determination of nonlocal symmetries by the
  technique of reduction of order, J. Math. Anal. Appl. 251
  (2000), 871-884.
 
- Olver P.J., Applications of Lie groups to differential equations,
  Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York,
  1986.
 
- Ovsiannikov L.V., Group analysis of differential equations, Academic Press
  Inc., New York, 1982.
 
- Popovych R.O., Boyko V.M., Differential invariants and application to
  Riccati-type systems, in Proceedinds of Fourth International Conference
  "Symmetry in Nonlinear Mathematical Physics" (Kyiv, 2001),
  Proceedings of Institute of Mathematics, Kyiv, Vol. 43, Part 1,
  Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych, Institute of Mathematics,
  Kyiv, 2002, 184-193, math-ph/0112057.
 
- Pucci E., Saccomandi G., On the reduction methods for ordinary differential
  equations, J. Phys. A: Math. Gen. 35 (2002), 6145-6155.
 
- Stephani H., Differential equations: their solution using symmetries, Cambridge
  University Press, Cambridge, 1989.
 
- Yasar E., Integrating factors and first integrals for Liénard type and
  frequency-damped oscillators, Math. Probl. Eng. 2011
  (2011), 916437, 10 pages.
 
 
 | 
 |