| 
 SIGMA 9 (2013), 003, 25 pages      arXiv:1210.4515     
https://doi.org/10.3842/SIGMA.2013.003 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
From Quantum AN to E8 Trigonometric Model: Space-of-Orbits View
Alexander V. Turbiner
 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,  Apartado Postal 70-543, 04510 México, D.F., Mexico
 
 
Received September 21, 2012, in final form January 11, 2013; Published online January 17, 2013 
Abstract
 
A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric
potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and
admit extra particular integrals.
All of them are characterized by (i) a number of polynomial eigenfunctions and quadratic in quantum numbers eigenvalues
for exactly-solvable cases, (ii) a factorization property for eigenfunctions, (iii) a rational form of the potential
and the polynomial entries of the metric in the Laplace-Beltrami operator in terms of affine-Weyl (exponential)
invariants (the same holds for rational models when polynomial invariants are used instead of exponential ones), they
admit (iv) an algebraic form of the gauge-rotated Hamiltonian in the exponential invariants (in the space of orbits)
and (v) a hidden algebraic structure. A hidden algebraic structure for (A–B–C–D)-models, both rational and
trigonometric, is related to the universal enveloping algebra Ugln. For the exceptional (G–F–E)-models, new,
infinite-dimensional, finitely-generated algebras of differential operators occur.
Special attention is given to the one-dimensional model with BC1≡(Z2)⊕T symmetry. In
particular, the BC1 origin of the so-called TTW model is revealed. This has led to a new quasi-exactly solvable
model on the plane with the hidden algebra sl(2)⊕sl(2).
  
 Key words:
(quasi)-exact-solvability; space of orbits; trigonometric models; algebraic forms; Coxeter (Weyl) invariants; hidden algebra. 
pdf (529 kb)  
tex (105 kb)
 
 
References
 
- Boreskov K.G., López Vieyra J.C., Turbiner A.V., Solvability of F4
  integrable system, Internat. J. Modern Phys. A 16 (2001),
  4769-4801, hep-th/0108021.
 
- Boreskov K.G., Turbiner A.V., López Vieyra J.C., Sutherland-type
  trigonometric models, trigonometric invariants, and multivariate polynomials,
  in Special Functions and Orthogonal Polynomials, Contemp. Math.,
  Vol. 471, Amer. Math. Soc., Providence, RI, 2008, 15-31, arXiv:0805.0770.
 
- Boreskov K.G., Turbiner A.V., López Vieyra J.C., García M.A.G.,
  Sutherland-type trigonometric models, trigonometric invariants and
  multivariate polynomials. III. E8 case, Internat. J. Modern
  Phys. A 26 (2011), 1399-1437, arXiv:1012.1902.
 
- Brink L., Turbiner A.V., Wyllard N., Hidden algebras of the (super) Calogero
  and Sutherland models, J. Math. Phys. 39 (1998),
  1285-1315, hep-th/9705219.
 
- Chryssomalakos C., Turbiner A.V., Canonical commutation relation preserving
  maps, J. Phys. A: Math. Gen. 34 (2001), 10475-10485,
  math-ph/0104004.
 
- García M.A.G., Turbiner A.V., Hidden algebra of Hamiltonian reduction,
  unpublished.
 
- García M.A.G., Turbiner A.V., The quantum H3 integrable system,
  Internat. J. Modern Phys. A 25 (2010), 5567-5594,
  arXiv:1007.0737.
 
- García M.A.G., Turbiner A.V., The quantum H4 integrable system,
  Modern Phys. Lett. A 26 (2011), 433-447,
  arXiv:1011.2127.
 
- González-López A., Kamran N., Olver P.J., Lie algebras of differential
  operators in two complex variables, Amer. J. Math. 114
  (1992), 1163-1185.
 
- Khastgir S.P., Pocklington A.J., Sasaki R., Quantum Calogero-Moser models:
  integrability for all root systems, J. Phys. A: Math. Gen.
  33 (2000), 9033-9064, hep-th/0005277.
 
- Lie S., Gruppenregister, Vol. 5, B.G. Teubner, Leipzig, 1924.
 
- López Vieyra J.C., García M.A.G., Turbiner A.V., Sutherland-type
  trigonometric models, trigonometric invariants and multivariable polynomials.
  II. E7 case, Modern Phys. Lett. A 24 (2009),
  1995-2004, arXiv:0904.0484.
 
- Olshanetsky M.A., Perelomov A.M., Quantum integrable systems related to Lie
  algebras, Phys. Rep. 94 (1983), 313-404.
 
- Oshima T., Completely integrable systems associated with classical root
  systems, SIGMA 3 (2007), 061, 50 pages,
  math-ph/0502028.
 
- Rosenbaum M., Turbiner A.V., Capella A., Solvability of the G2 integrable
  system, Internat. J. Modern Phys. A 13 (1998), 3885-3903,
  hep-th/9606092.
 
- Rühl W., Turbiner A.V., Exact solvability of the Calogero and
  Sutherland models, Modern Phys. Lett. A 10 (1995),
  2213-2221, hep-th/9506105.
 
- Smirnov Yu., Turbiner A.V., Lie algebraic discretization of differential
  equations, Modern Phys. Lett. A 10 (1995), 1795-1802,
  Errata, Modern
  Phys. Lett. A 10 (1995), 3139, funct-an/9501001.
 
- Sutherland B., Exact results for a quantum many-body problem in one dimension,
  Phys. Rev. A 4 (1971), 2019-2021.
 
- Tremblay F., Turbiner A.V., Winternitz P., An infinite family of solvable and
  integrable quantum systems on a plane, J. Phys. A: Math. Theor.
  42 (2009), 242001, 10 pages, arXiv:0904.0738.
 
- Turbiner A.V., BC2 Lame polynomials, Talks presented at 1085 Special
  Session of American Mathematical Society (Tucson, 2012) and Annual Meeting of
  Canadian Mathematical Society (Montréal, 2012).
 
- Turbiner A.V., From quantum AN (Calogero) to H4 (rational) model,
  SIGMA 7 (2011), 071, 20 pages, arXiv:1106.5017.
 
- Turbiner A.V., Particular integrability and (quasi)-exact-solvability,
  J. Phys. A: Math. Theor. 46 (2013), 025203, 9 pages,
  arXiv:1206.2907.
 
- Turbiner A.V., Quasi-exactly-solvable problems and sl(2) algebra,
  Comm. Math. Phys. 118 (1988), 467-474.
 
- Turbiner A.V., Two-body elliptic model in proper variables: Lie algebraic
  forms and their discretizations, in Calogero-Moser-Sutherland Models
  (Montréal, 1997), CRM Ser. Math. Phys., Springer, New York, 2000,
  473-484, solv-int/9710004.
 
 
 | 
 |