| 
 SIGMA 9 (2013), 006, 13 pages      arXiv:1206.3751     
https://doi.org/10.3842/SIGMA.2013.006 
On the N-Solitons Solutions in  the Novikov-Veselov Equation
Jen-Hsu Chang
 Department of Computer Science and Information Engineering,  National Defense University,  Tauyuan, Taiwan
 
 
Received October 01, 2012, in final form January 12, 2013; Published online January 20, 2013 
Abstract
 
We construct  the $N$-solitons solution in the Novikov-Veselov
equation from the extended Moutard transformation and the Pfaffian
structure. Also, the corresponding wave functions are obtained
explicitly. As a result, the property characterizing the
$N$-solitons wave function is proved using the Pfaffian expansion.
This property corresponding to the discrete scattering data for
$N$-solitons solution is obtained in [arXiv:0912.2155] from the $\overline\partial$-dressing method.
  
 Key words:
Novikov-Veselov equation; $N$-solitons solutions; Pfaffian expansion; wave functions. 
pdf (352 kb)  
tex (20 kb)
 
 
References
 
- Athorne C., Nimmo J.J.C., On the Moutard transformation for integrable
  partial differential equations, Inverse Problems 7 (1991),
  809-826.
 
- Basalaev M.Yu., Dubrovsky V.G., Topovsky A.V., New exact solutions with constant
  asymptotic values at infinity of the NVN integrable nonlinear evolution
  equation via $\overline\partial$-dressing method, arXiv:0912.2155.
 
- Bogdanov L.V., Veselov-Novikov equation as a natural two-dimensional
  generalization of the Korteweg-de Vries equation, Theoret. Math.
  Phys. 70 (1987), 219-223.
 
- Chang J.H., The Gould-Hopper polynomials in the Novikov-Veselov
  equation, J. Math. Phys. 52 (2011), 092703, 15 pages,
  arXiv:1011.1614.
 
- Dubrovin B.A., Krichever I.M., Novikov S.P., The Schrödinger equation in a
  periodic field and Riemann surfaces, Sov. Math. Dokl. 17
  (1976), 947-952.
 
- Dubrovsky V.G., Formusatik I.B., New lumps of Veselov-Novikov integrable
  nonlinear equation and new exact rational potentials of two-dimensional
  stationary Schrödinger equation via $\overline\partial$-dressing
  method, Phys. Lett. A 313 (2003), 68-76.
 
- Dubrovsky V.G., Formusatik I.B., The construction of exact rational solutions
  with constant asymptotic values at infinity of two-dimensional NVN
  integrable nonlinear evolution equations via the
  $\overline\partial$-dressing method, J. Phys. A: Math.Gen.
  34 (2001), 1837-1851.
 
- Grinevich P.G., Rational solitons of the Veselov-Novikov equations are
  reflectionless two-dimensional potentials at fixed energy, Theoret.
  Math. Phys. 69 (1986), 1170-1172.
 
- Grinevich P.G., Manakov S.V., Inverse scattering problem for the
  two-dimensional Schrödinger operator, the $\overline\partial$-method and
  nonlinear equations, Funct. Anal. Appl. 20 (1986), 94-103.
 
- Grinevich P.G., Mironov A.E., Novikov S.P., New reductions and nonlinear
  systems for 2D Schrödinger operators, arXiv:1001.4300.
 
- Hirota R., The direct method in soliton theory, Cambridge Tracts in
  Mathematics, Vol. 155, Cambridge University Press, Cambridge, 2004.
 
- Hu H.C., Lou S.Y., Construction of the Darboux transformaiton and solutions to
  the modified Nizhnik-Novikov-Veselov equation, Chinese Phys. Lett.
  21 (2004), 2073-2076.
 
- Hu H.C., Lou S.Y., Liu Q.P., Darboux transformation and variable separation
  approach: the Nizhnik-Novikov-Veselov equation, Chinese Phys.
  Lett. 20 (2003), 1413-1415, nlin.SI/0210012.
 
- Ishikawa M., Wakayama M., Applications of minor-summation formula.
  II. Pfaffians and Schur polynomials, J. Combin. Theory Ser. A
  88 (1999), 136-157.
 
- Kaptsov O.V., Shan'ko Yu.V., Trilinear representation and the Moutard
  transformation for the Tzitzéica equation, solv-int/9704014.
 
- Kodama Y., KP solitons in shallow water, J. Phys. A: Math. Gen.
  43 (2010), 434004, 54 pages, arXiv:1004.4607.
 
- Kodama Y., Maruno K., $N$-soliton solutions to the DKP equation and
  Weyl group actions, J. Phys. A: Math. Gen. 39 (2006),
  4063-4086, nlin.SI/0602031.
 
- Kodama Y., Williams L.K., KP solitons and total positivity for the
  Grassmannian, arXiv:1106.0023.
 
- Kodama Y., Williams L.K., KP solitons, total positivity, and cluster
  algebras, Proc. Natl. Acad. Sci. USA 108 (2011),
  8984-8989, arXiv:1105.4170.
 
- Konopelchenko B.G., Introduction to multidimensional integrable equations. The
  inverse spectral transform in 2+1 dimensions, Plenum Press, New York, 1992.
 
- Konopelchenko B.G., Landolfi G., Induced surfaces and their integrable
  dynamics. II. Generalized Weierstrass representations in 4D spaces and
  deformations via DS hierarchy, Stud. Appl. Math. 104
  (2000), 129-169.
 
- Krichever I.M., A characterization of Prym varieties, Int. Math. Res.
  Not. 2006 (2006), Art. ID 81476, 36 pages,
  math.AG/0506238.
 
- Liu S.Q., Wu C.Z., Zhang Y., On the Drinfeld-Sokolov hierarchies of $D$
  type, Int. Math. Res. Not. 2011 (2011), 1952-1996,
  arXiv:0912.5273.
 
- Manakov S.V., The method of the inverse scattering problem, and two-dimensional
  evolution equations, Russian Math. Surveys 31 (1976),
  no. 5, 245-246.
 
- Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series
  in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
 
- Mironov A.E., A relationship between symmetries of the Tzitzéica equation
  and the Veselov-Novikov hierarchy, Math. Notes 82
  (2007), 569-572.
 
- Mironov A.E., Finite-gap minimal Lagrangian surfaces in ${\mathbb C}{\rm P}^2$, in Riemann Surfaces, Harmonic Maps and Visualization, OCAMI
  Stud., Vol. 3, Osaka Munic. Univ. Press, Osaka, 2010, 185-196,
  arXiv:1005.3402.
 
- Mironov A.E., The Veselov-Novikov hierarchy of equations, and integrable
  deformations of minimal Lagrangian tori in ${\mathbb C}{\rm P}^2$,
  Sib. Electron. Math. Rep. 1 (2004), 38-46,
  math.DG/0607700.
 
- Moutard M., Note sur les équations différentielles linéaires du second
  ordre, C.R. Acad. Sci. Paris 80 (1875), 729-733.
 
- Moutard M., Sur la construction des équations de la forme $\frac{1}{z}  \frac{\partial^2z}{\partial x\partial y} =\lambda(xy)$, qui admettent une
  intégrale générale explicite, J. de. l'Éc. Polyt.
  28 (1878), 1-12.
 
- Nimmo J.J.C., Darboux transformations in (2+1)-dimensions, in Applications
  of Analytic and Geometric Methods to Nonlinear Differential Equations
  (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, 183-192.
 
- Nimmo J.J.C., Hall-Littlewood symmetric functions and the BKP equation,
  J. Phys. A: Math. Gen. 23 (1990), 751-760.
 
- Novikov S.P., Two-dimensional Schrödinger operators in periodic fields,
  J. Sov. Math. 28 (1985), 1-20.
 
- Novikov S.P., Veselov A.P., Two-dimensional Schrödinger operator: inverse
  scattering transform and evolutional equations, Phys. D 18
  (1986), 267-273.
 
- Ohta Y., Pfaffian solutions for the Veselov-Novikov equation,
  J. Phys. Soc. Japan 61 (1992), 3928-3933.
 
- Orlov A.Yu., Shiota T., Takasaki K., Pfaffian structures and certain solutions
  to BKP hierarchies. I. Sums over partitions, arXiv:1201.4518.
 
- Shiota T., Prym varieties and soliton equations, in Infinite-Dimensional Lie
  Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math.
  Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 407-448.
 
- Stembridge J.R., Nonintersecting paths, Pfaffians, and plane partitions,
  Adv. Math. 83 (1990), 96-131.
 
- Taimanov I.A., Tsarev S.P., Two-dimensional rational solitons and their blowup
  via the Moutard transformation, Theoret. Math. Phys. 157
  (2008), 1525-1541, arXiv:0801.3225.
 
- Takasaki K., Dispersionless Hirota equations of two-component BKP
  hierarchy, SIGMA 2 (2006), 057, 22 pages,
  nlin.SI/0604003.
 
- Veselov A.P., Novikov S.P., Finite-zone, two-dimensional, potential
  Schrödinger operators. Explicit formulas and evolution equations,
  Sov. Math. Dokl. 30 (1984), 588-591.
 
 
 | 
 |