| 
 SIGMA 9 (2013), 009, 31 pages      arXiv:1207.1308     
https://doi.org/10.3842/SIGMA.2013.009 
Binary Darboux Transformations in Bidifferential Calculus  and Integrable Reductions of Vacuum Einstein Equations
Aristophanes Dimakis a and Folkert Müller-Hoissen b
 a) Department of Financial and Management Engineering,  University of the Aegean, 82100 Chios, Greece
 b) Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
 
 
Received November 12, 2012, in final form January 29, 2013; Published online February 02, 2013 
Abstract
 
We present a general solution-generating result within the bidifferential
calculus approach to integrable partial differential and difference equations, based on a
binary Darboux-type transformation. This is then applied to the non-autonomous chiral model,
a certain reduction of which is known to appear in the case of the D-dimensional vacuum
Einstein equations with D−2 commuting Killing vector fields.
A large class of exact solutions is obtained, and the aforementioned reduction is
implemented. This results in an alternative to the well-known Belinski-Zakharov formalism.
We recover relevant examples of space-times in dimensions four (Kerr-NUT,
Tomimatsu-Sato) and five (single and double Myers-Perry black holes, black saturn,
bicycling black rings).
  
 Key words:
bidifferential calculus; binary Darboux transformation; chiral model; Einstein equations; black ring. 
pdf (610 kb)  
tex (47 kb)
 
 
References
 
- Arsie A., Lorenzoni P., F-manifolds with eventual identities, bidifferential
  calculus and twisted Lenard-Magri chains, Int. Math. Res. Not., to
  appear, arXiv:1110.2461.
 
- Belinski V.A., Verdaguer E., Gravitational solitons, Cambridge Monographs on
  Mathematical Physics, Cambridge University Press, Cambridge, 2001.
 
- Belinski V.A., Sakharov V.E., Stationary gravitational solitons with
  axial symmetry, Sov. Phys. JETP 50 (1979), 1-9.
 
- Belinski V.A., Zakharov V.E., Integration of the Einstein equations by
  means of the inverse scattering problem technique and construction of exact
  soliton solutions, Sov. Phys. JETP 48 (1978), 985-994.
 
- Breitenlohner P., Maison D., Gibbons G., 4-dimensional black holes from
  Kaluza-Klein theories, Comm. Math. Phys. 120 (1988),
  295-333.
 
- Camacaro J., Cariñena J., Alternative Lie algebroid structures and
  bi-differential calculi, in Applied Differential Geometry and Mechanics,
  Editors W. Sarlet, F. Cantrijn, University of Gent, 2003, 1-20.
 
- Chavchanidze G., Non-Noether symmetries in Hamiltonian dynamical systems,
  Mem. Differential Equations Math. Phys. 36 (2005), 81-134,
  math-ph/0405003.
 
- Chen Y., Hong K., Teo E., Unbalanced Pomeransky-Sen'kov black ring,
  Phys. Rev. D 84 (2011), 084030, 11 pages,
  arXiv:1108.1849.
 
- Chen Y., Teo E., Rod-structure classification of gravitational instantons with
  U(1)×U(1) isometry, Nuclear Phys. B 838 (2010),
  207-237, arXiv:1004.2750.
 
- Chruściel P., Cortier J., Maximal analytic extensions of the Emparan-Reall
  black ring, J. Phys. Conf. Ser. 229 (2010), 012030,
  4 pages, arXiv:0807.2309.
 
- Chruściel P.T., Eckstein M., Szybka S.J., On smoothness of black saturns,
  J. High Energy Phys. 2010 (2010), no. 11, 048, 39 pages,
  arXiv:1007.3668.
 
- Cieśliński J.L., Algebraic construction of the Darboux matrix
  revisited, J. Phys. A: Math. Theor. 42 (2009), 404003,
  40 pages, arXiv:0904.3987.
 
- Crampin M., Sarlet W., Thompson G., Bi-differential calculi, bi-Hamiltonian
  systems and conformal Killing tensors, J. Phys. A: Math. Gen.
  33 (2000), 8755-8770.
 
- de Souza E., Bhattacharyya S.P., Controllability, observability and the
  solution of AX−XB=C, Linear Algebra Appl. 39 (1981),
  167-188.
 
- Dimakis A., Kanning N., Müller-Hoissen F., The non-autonomous chiral model
  and the Ernst equation of general relativity in the bidifferential calculus
  framework, SIGMA 7 (2011), 118, 27 pages,
  arXiv:1106.4122.
 
- Dimakis A., Müller-Hoissen F., Bi-differential calculi and integrable
  models, J. Phys. A: Math. Gen. 33 (2000), 957-974,
  math-ph/9908015.
 
- Dimakis A., Müller-Hoissen F., Bicomplexes and integrable models,
  J. Phys. A: Math. Gen. 33 (2000), 6579-6591,
  nlin.SI/0006029.
 
- Dimakis A., Müller-Hoissen F., Bidifferential calculus approach to AKNS
  hierarchies and their solutions, SIGMA 6 (2010), 055,
  27 pages, arXiv:1004.1627.
 
- Dimakis A., Müller-Hoissen F., Bidifferential graded algebras and
  integrable systems, Discrete Contin. Dyn. Syst.  (2009), suppl.,
  208-219, arXiv:0805.4553.
 
- Dimakis A., Müller-Hoissen F., Solutions of matrix NLS systems and their
  discretizations: a unified treatment, Inverse Problems 26
  (2010), 095007, 55 pages, arXiv:1001.0133.
 
- Economou A., Tsoubelis D., Multiple-soliton solutions of Einstein's
  equations, J. Math. Phys. 30 (1989), 1562-1569.
 
- Elvang H., Figueras P., Black saturn, J. High Energy Phys.
  2007 (2007), no. 5, 050, 48 pages, hep-th/0701035.
 
- Elvang H., Rodriguez M.J., Bicycling black rings, J. High Energy Phys.
  2008 (2008), no. 4, 045, 30 pages, arXiv:0712.2425.
 
- Emparan R., Reall H.S., A rotating black ring solution in five dimensions,
  Phys. Rev. Lett. 88 (2002), 101101, 4 pages,
  hep-th/0110260.
 
- Emparan R., Reall H.S., Black holes in higher dimensions, Living Rev.
  Relativ. 11 (2008), 6, 87 pages, arXiv:0801.3471.
 
- Emparan R., Reall H.S., Black rings, Classical Quantum Gravity
  23 (2006), R169-R197, hep-th/0608012.
 
- Emparan R., Reall H.S., Generalized Weyl solutions, Phys. Rev. D
  65 (2002), 084025, 26 pages, hep-th/0110258.
 
- Evslin J., Krishnan C., The black di-ring: an inverse scattering construction,
  Classical Quantum Gravity 26 (2009), 125018, 13 pages,
  arXiv:0706.1231.
 
- Figueras P., A black ring with a rotating 2-sphere, J. High Energy
  Phys. 2005 (2005), no. 7, 039, 9 pages, hep-th/0505244.
 
- Figueras P., Jamsin E., Rocha J.V., Virmani A., Integrability of
  five-dimensional minimal supergravity and charged rotating black holes,
  Classical Quantum Gravity 27 (2010), 135011, 37 pages,
  arXiv:0912.3199.
 
- Frölicher A., Nijenhuis A., Theory of vector-valued differential forms.
  I. Derivations in the graded ring of differential forms, Proc.
  Koninkl. Ned. Acad. Wetensch. Ser. A 59 (1956), 338-359.
 
- Frolov V.P., Goswami R., Surface geometry of 5D black holes and black rings,
  Phys. Rev. D 75 (2007), 124001, 11 pages,
  gr-qc/0612033.
 
- Gauntlett J.P., Gutowski J.B., Concentric black rings, Phys. Rev. D
  71 (2005), 025013, 7 pages, hep-th/0408010.
 
- Griffiths J.B., Colliding plane waves in general relativity, Oxford
  Mathematical Monographs, Oxford Science Publications, The Clarendon Press,
  Oxford University Press, New York, 1991.
 
- Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory
  and their applications to geometry, Mathematical Physics Studies,
  Vol. 26, Springer, Dordrecht, 2005.
 
- Harmark T., Stationary and axisymmetric solutions of higher-dimensional general
  relativity, Phys. Rev. D 70 (2004), 124002, 25 pages,
  hep-th/0408141.
 
- Hartwig R.E., Resultants and the solution of AX−XB=−C, SIAM J.
  Appl. Math. 23 (1972), 104-117.
 
- Hearon J.Z., Nonsingular solutions of TA−BT=C, Linear Algebra
  Appl. 16 (1977), 57-63.
 
- Herdeiro C., Rebelo C., Zilhão M., Costa M., A double Myers-Perry black
  hole in five dimensions, J. High Energy Phys. 2008 (2008),
  no. 7, 009, 24 pages, arXiv:0805.1206.
 
- Hollands S., Yazadjiev S., Uniqueness theorem for 5-dimensional black holes
  with two axial Killing fields, Comm. Math. Phys. 283
  (2008), 749-768, arXiv:0707.2775.
 
- Hong K., Teo E., A new form of the C-metric, Classical Quantum
  Gravity 20 (2003), 3269-3277, gr-qc/0305089.
 
- Horowitz G. (Editor), Black holes in higher dimensions, Cambridge University
  Press, Cambridge, 2012.
 
- Hoskisson J., Explorations of four and five dimensional black hole spacetimes,
  Ph.D. thesis, Durham University, 2009, available at
  http://etheses.dur.ac.uk/2115/.
 
- Hu Q., Cheng D., The polynomial solution to the Sylvester matrix equation,
  Appl. Math. Lett. 19 (2006), 859-864.
 
- Iguchi H., Izumi K., Mishima T., Systematic solution-generation of
  five-dimensional black holes, Progr. Theoret. Phys. Suppl.
  189 (2011), 93-125, arXiv:1106.0387.
 
- Iguchi H., Mishima T., Solitonic generation of vacuum solutions in
  five-dimensional general relativity, Phys. Rev. D 74
  (2006), 024029, 17 pages, hep-th/0605090.
 
- Izumi K., Orthogonal black di-ring solution, Progr. Theoret. Phys.
  119 (2008), 757-774, arXiv:0712.0902.
 
- Klein C., Richter O., Ernst equation and Riemann surfaces. Analytical and
  numerical methods, Lecture Notes in Physics, Vol. 685,
  Springer-Verlag, Berlin, 2005.
 
- Kodama H., Hikida W., Global structure of the Zipoy-Voorhees-Weyl
  spacetime and the δ=2 Tomimatsu-Sato spacetime,
  Classical Quantum Gravity 20 (2003), 5121-5140,
  gr-qc/0304064.
 
- Kramer D., Neugebauer G., The superposition of two Kerr solutions,
  Phys. Lett. A 75 (1980), 259-261.
 
- Lorenzoni P., Flat bidifferential ideals and semi-Hamiltonian PDEs,
  J. Phys. A: Math. Gen. 39 (2006), 13701-13715,
  nlin.SI/0604053.
 
- Lorenzoni P., Magri F., A cohomological construction of integrable hierarchies
  of hydrodynamic type, Int. Math. Res. Not. 2005 (2005),
  no. 34, 2087-2100, nlin.SI/0504064.
 
- Marchenko V.A., Nonlinear equations and operator algebras, Mathematics
  and its Applications (Soviet Series), Vol. 17, D. Reidel Publishing Co.,
  Dordrecht, 1988.
 
- Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series
  in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
 
- Mishima T., Iguchi H., New axisymmetric stationary solutions of
  five-dimensional vacuum Einstein equations with asymptotic flatness,
  Phys. Rev. D 73 (2006), 044030, 6 pages,
  hep-th/0504018.
 
- Myers R.C., Myers-Perry black holes, in Black Holes in Higher Dimensions,
  Editor G. Horowitz, Cambridge University Press, Cambridge, 2012, 101-133,
  arXiv:1111.1903.
 
- Myers R.C., Perry M.J., Black holes in higher-dimensional space-times,
  Ann. Physics 172 (1986), 304-347.
 
- Nakamura Y., Symmetries of stationary axially symmetric vacuum Einstein
  equations and the new family of exact solutions, J. Math. Phys.
  24 (1983), 606-609.
 
- Nimmo J.J.C., Gilson C., Ohta Y., Applications of Darboux transformations to the
  self-dual Yang-Mills equations, Theoret. and Math. Phys.
  122 (2000), 239-246.
 
- Pomeransky A.A., Complete integrability of higher-dimensional Einstein
  equations with additional symmetry and rotating black holes, Phys.
  Rev. D 73 (2006), 044004, 5 pages, hep-th/0507250.
 
- Pomeransky A.A., Sen'kov R.A., Black ring with two angular momenta,
  hep-th/0612005.
 
- Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and
  modern applications in soliton theory, Cambridge Texts in Applied
  Mathematics, Cambridge University Press, Cambridge, 2002.
 
- Sakhnovich A.L., Dressing procedure for solutions of nonlinear equations and
  the method of operator identities, Inverse Problems 10
  (1994), 699-710.
 
- Sakhnovich A.L., Generalized Bäcklund-Darboux transformation: spectral
  properties and nonlinear equations, J. Math. Anal. Appl.
  262 (2001), 274-306.
 
- Sakhnovich A.L., On the GBDT version of the Bäcklund-Darboux
  transformation and its applications to linear and nonlinear equations and
  Weyl theory, Math. Model. Nat. Phenom. 5 (2010),
  340-389, arXiv:0909.1537.
 
- Sakhnovich L.A., Problems of factorization and operator identities,
  Russ. Math. Surv. 41 (1986), no. 1, 1-64.
 
- Sparano G., Vilasi G., Vinogradov A.M., Vacuum Einstein metrics with
  bidimensional Killing leaves. I. Local aspects, Differential
  Geom. Appl. 16 (2002), 95-120, gr-qc/0301020.
 
- Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions
  of Einstein's field equations, 2nd ed., Cambridge Monographs on
  Mathematical Physics, Cambridge University Press, Cambridge, 2003.
 
- Szybka S.J., Stable causality of Black Saturns, J. High Energy
  Phys. 2011 (2011), no. 5, 052, 9 pages, arXiv:1102.3942.
 
- Tan H.S., Teo E., Multi-black-hole solutions in five dimensions, Phys.
  Rev. D 68 (2003), 044021, 11 pages, hep-th/0306044.
 
- Tangherlini F.R., Schwarzschild field in n dimensions and the
  dimensionality of space problem, Nuovo Cimento 27 (1963),
  636-651.
 
- Tomimatsu A., Sato H., New exact solution for the gravitational field of a
  spinning mass, Phys. Rev. Lett. 29 (1972), 1344-1345.
 
- Tomizawa S., Ishihara H., Exact solutions of higher dimensional black holes,
  arXiv:1104.1468.
 
- Tomizawa S., Morisawa Y., Yasui Y., Vacuum solutions of five dimensional
  Einstein equations generated by inverse scattering method, Phys.
  Rev. D 73 (2006), 064009, 8 pages, hep-th/0512252.
 
- Tomizawa S., Nozawa M., Vacuum solutions of five dimensional Einstein
  equations generated by inverse scattering method. II. Production of the
  black ring solution, Phys. Rev. D 73 (2006), 124034,
  10 pages, hep-th/0604067.
 
- Tomizawa S., Uchida Y., Shiromizu M., Twist of stationary black hole or ring in
  five dimensions, Phys. Rev. D 70 (2004), 064020, 5 pages,
  gr-qc/0405134.
 
- Verdaguer E., Soliton solutions in spacetime with two spacelike Killing
  fields, Phys. Rep. 229 (1993), 1-80.
 
- Yazadjiev S.S., 5D Einstein-Maxwell solitons and concentric rotating
  dipole black rings, Phys. Rev. D 78 (2008), 064032,
  11 pages, arXiv:0805.1600.
 
- Yazadjiev S.S., Black saturn with a dipole ring, Phys. Rev. D
  76 (2007), 064011, 8 pages, arXiv:0705.1840.
 
- Yazadjiev S.S., Completely integrable sector in 5D Einstein-Maxwell
  gravity and derivation of the dipole black ring solutions, Phys.
  Rev. D 73 (2006), 104007, 7 pages, hep-th/0602116.
 
 
 | 
 |