| 
 SIGMA 9 (2013), 011, 10 pages      arXiv:1209.1612     
https://doi.org/10.3842/SIGMA.2013.011 
On the n-Dimensional Porous Medium Diffusion Equation and Global Actions of the Symmetry Group
Jose A. Franco
 Department of Mathematics and Statistics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224 USA
 
 
Received September 10, 2012, in final form February 08, 2013; Published online February 12, 2013 
Abstract
 
By restricting to a special class of smooth functions, the local action of the symmetry
group is globalized.
This special class of functions is constructed using parabolic induction.
  
 Key words:
globalization; porous medium equation; Lie group representation; Lorentz group; parabolic induction. 
pdf (380 kb)  
tex (15 kb)
 
 
References
 
- Ames W.F., Anderson R.L., Dorodnitsyn V.A., Ferapontov E.V., Gazizov R.K.,
  Ibragimov N.H., Svirshchevskiĭ S.R., CRC handbook of Lie group
  analysis of differential equations. Vol. 1, Symmetries, exact solutions and
  conservation laws, CRC Press, Boca Raton, FL, 1994.
 
- Cowling M., Frenkel E., Kashiwara M., Valette A., Vogan Jr. D.A., Wallach N.R.,
  Representation theory and complex analysis (Lectures from the C.I.M.E. Summer
  School held in Venice, June 10-17, 2004), Lecture Notes in
  Mathematics, Vol. 1931, Springer-Verlag, Berlin, 2008.
 
- Craddock M.J., Dooley A.H., On the equivalence of Lie symmetries and group
  representations, J. Differential Equations 249 (2010),
  621-653.
 
- Dorodnitsyn V.A., Knyazeva I.V., Svirshchevskiĭ S.R., Group properties of
  the anisotropic heat equation with source
  $T_{t}=\sum_{i}(K_{i}(T)T_{x_{i}})_{x_{i}}+Q(T)$,  Akad. Nauk SSSR
  Inst. Prikl. Mat., Preprint no. 134, 1982, 20 pages.
 
- Dos Santos Cardoso-Bihlo E., Bihlo A., Popovych R.O., Enhanced preliminary
  group classification of a class of generalized diffusion equations,
  Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3622-3638,
  arXiv:1012.0297.
 
- Franco J., Global $\widetilde{{\rm SL}(2,R)}$ representations of the
  Schrödinger equation with singular potential, Cent. Eur. J.
  Math. 10 (2012), 927-941, arXiv:1104.3508.
 
- Hunziker M., Sepanski M.R., Stanke R.J., The minimal representation of the
  conformal group and classical solutions to the wave equation, J. Lie
  Theory 22 (2012), 301-360, arXiv:0901.2280.
 
- Knapp A.W., Lie groups beyond an introduction, Progress in
  Mathematics, Vol. 140, Birkhäuser Boston Inc., Boston, MA, 1996.
 
- Knapp A.W., Representation theory of semisimple groups, Princeton Landmarks in
  Mathematics, Princeton University Press, Princeton, NJ, 2001.
 
- Kostant B., Wallach N., Action of the conformal group on steady state solutions
  to Maxwell's equations and background radiation, arXiv:1109.5745.
 
- Olver P.J., Applications of Lie groups to differential equations,
  Graduate Texts in Mathematics, Vol. 107, 2nd ed., Springer-Verlag,
  New York, 1993.
 
- Ovsjannikov L.V., Group relations of the equation of non-linear heat
  conductivity, Dokl. Akad. Nauk SSSR 125 (1959), 592-595.
 
- Sepanski M.R., Global actions of Lie symmetries for the nonlinear heat
  equation, J. Math. Anal. Appl. 360 (2009), 35-46.
 
- Sepanski M.R., Nonlinear potential filtration equation and global actions of
  Lie symmetries, Electron. J. Differential Equations 2009
  (2009), no. 101, 24 pages.
 
- Sepanski M.R., Stanke R.J., Global Lie symmetries of the heat and
  Schrödinger equation, J. Lie Theory 20 (2010),
  543-580.
 
- Vázquez J.L., The porous medium equation. Mathematical theory, Oxford
  Mathematical Monographs, The Clarendon Press, Oxford University Press,
  Oxford, 2007.
 
- Wu Z., Zhao J., Yin J., Li H., Nonlinear diffusion equations, World Scientific
  Publishing Co. Inc., River Edge, NJ, 2001.
 
 
 | 
 |