| 
 SIGMA 9 (2013), 013, 25 pages      arXiv:1203.5119     
https://doi.org/10.3842/SIGMA.2013.013 
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology” 
Semiclassical Loop Quantum Gravity and Black Hole Thermodynamics
Arundhati Dasgupta
 University of Lethbridge, 4401 University Drive, Lethbridge T1K 7R8, Canada
 
 
Received March 22, 2012, in final form February 05, 2013; Published online February 16, 2013 
Abstract
 
In this article we explore the origin of black hole thermodynamics using semiclassical
states in loop quantum gravity.
We re-examine the case of entropy
using a density matrix for a coherent state and describe correlations across the horizon due to
SU(2) intertwiners.
We further show that Hawking radiation
is a consequence of a non-Hermitian term in the evolution operator, which is necessary for entropy
production or depletion at the horizon.
This non-unitary evolution is also rooted in formulations of irreversible physics.
  
 Key words:
black holes; loop quantum gravity; coherent states; entanglement entropy. 
pdf (453 kb)  
tex (82 kb)
 
 
References
 
- Álvarez N., Gambini R., Pullin J., Local Hamiltonian for spherically
  symmetric gravity coupled to a scalar field, Phys. Rev. Lett.
  108 (2012), 051301, 4 pages, arXiv:1111.4962.
 
- Ambjørn J., Jurkiewicz J., Loll R., Lattice quantum gravity - an update,
  PoS Proc. Sci.  (2010), PoS(LATTICE2010), 014, 14 pages,
  arXiv:1105.5582.
 
- Ashtekar A., Introduction to loop quantum gravity, arXiv:1201.4598.
 
- Ashtekar A., Baez J., Corichi A., Krasnov K., Quantum geometry and black hole
  entropy, Phys. Rev. Lett. 80 (1998), 904-907,
  gr-qc/9710007.
 
- Ashtekar A., Rovelli C., Smolin L., Weaving a classical metric with quantum
  threads, Phys. Rev. Lett. 69 (1992), 237-240,
  hep-th/9203079.
 
- Barbero J.F., Lewandowski J., Villasenor E.J., Quantum isolated horizons and
  black hole entropy, arXiv:1203.0174.
 
- Bardeen J.M., Carter B., Hawking S.W., The four laws of black hole mechanics,
  Comm. Math. Phys. 31 (1973), 161-170.
 
- Barvinsky A.O., Frolov V.P., Zel'nikov A.I., The wave function of a black hole
  and the dynamical origin of entropy, Phys. Rev. D 51
  (1995), 1741-1763.
 
- Bekenstein J.D., Black holes and entropy, Phys. Rev. D 7
  (1973), 2333-2346.
 
- Bianchi E., Magliaro E., Perini C., Coherent spin-networks, Phys.
  Rev. D 82 (2010), 024012, 7 pages, arXiv:0912.4054.
 
- Bombelli L., Koul R.K., Lee J., Sorkin R.D., Quantum source of entropy for
  black holes, Phys. Rev. D 34 (1986), 373-383.
 
- Borja E.F., Garay I., Strobel E., Revisiting the quantum scalar field in
  spherically symmetric quantum gravity, Classical Quantum Gravity
  29 (2012), 145012, 19 pages, arXiv:1201.4229.
 
- Brown J.D., York Jr. J.W., Quasilocal energy and conserved charges derived from
  the gravitational action, Phys. Rev. D 47 (1993),
  1407-1419, gr-qc/9209012.
 
- Corichi A., Black holes in loop quantum gravity: recent advances,
  J. Phys. Conf. Ser. 140 (2008), 012006, 13 pages,
  arXiv:0901.1302.
 
- Dasgupta A., Entanglement entropy and Bekenstein-Hawking entropy of black holes, in preparation.
 
- Dasgupta A., Coherent states for black holes, J. Cosmol. Astropart.
  Phys. 2003 (2003), no. 8, 004, 36 pages, hep-th/0305131.
 
- Dasgupta A., Entropic origin of Hawking radiation, in Proceedings of the
  Twelfth Marcel Grossmann Meeting on General Relativity (Paris, 2009), Editors
  T. Damour, R.T. Jantzen, R. Ruffini, World Scientific, Singapore, 2012,
  1132-1134, arXiv:1003.0441.
 
- Dasgupta A., Semi-classical quantization of spacetimes with apparent horizons,
  Classical Quantum Gravity 23 (2006), 635-672,
  gr-qc/0505017.
 
- Dasgupta A., Semiclassical horizons, Can. J. Phys. 86 (2008),
  659-662, arXiv:0711.0714.
 
- Dasgupta A., Time evolution of horizons, J. Modern Phys. 3
  (2012), 1289-1297, arXiv:1007.1437.
 
- Dittrich B., Introduction to loop quantum gravity, Lectures given at
  University of New Brunswick, 2006.
 
- Doná P., Speziale S., Introductory lectures to loop quantum gravity,
  arXiv:1007.0402.
 
- Freidel L., Livine E.R., U(N) coherent states for loop quantum
  gravity, J. Math. Phys. 52 (2011), 052502, 21 pages,
  arXiv:1005.2090.
 
- Gambini R., Pullin J., Spherically symmetric gravity coupled to a scalar field
  with a local Hamiltonian: the complete initial-boundary value problem using
  metric variables, Classical Quantum Gravity 30 (2013),
  025012, 7 pages, arXiv:1207.6028.
 
- Hall B.C., The Segal-Bargmann "coherent state" transform for compact
  Lie groups, J. Funct. Anal. 122 (1994), 103-151.
 
- Hawking S.W., Black holes in general relativity, Comm. Math. Phys.
  25 (1972), 152-166.
 
- Hawking S.W., Particle creation by black holes, Comm. Math. Phys.
  43 (1975), 199-220.
 
- Hawking S.W., Horowitz G.T., The gravitational Hamiltonian, action, entropy
  and surface terms, Classical Quantum Gravity 13 (1996),
  1487-1498, gr-qc/9501014.
 
- Husain V., Mann R.B., Thermodynamics and phases in quantum gravity,
  Classical Quantum Gravity 26 (2009), 075010, 6 pages,
  arXiv:0812.0399.
 
- Husain V., Terno D., Dynamics and entanglement in spherically symmetric quantum
  gravity, Phys. Rev. D 81 (2010), 044039, 11 pages,
  arXiv:0903.1471.
 
- Husain V., Winkler O., Quantum Hamiltonian for gravitational collapse,
  Phys. Rev. D 73 (2006), 124007, 8 pages,
  gr-qc/0601082.
 
- Magliaro E., Marcianó A., Perini C., Coherent states for FLRW space-times in
  loop quantum gravity, Phys. Rev. D 83 (2011), 044029,
  9 pages, arXiv:1011.5676.
 
- Majumdar P., Holography, gauge-gravity connection and black hole entropy,
  Internat. J. Modern Phys. A 24 (2009), 3414-3425,
  arXiv:0903.5080.
 
- Prigogine I., From being to becoming: time and complexity in physical sciences,
  Freeman, San Francisco, CA, 1980.
 
- Reinsch M.W., Morehead J.J., Asymptotics of Clebsch-Gordan coefficients,
  J. Math. Phys. 40 (1999), 4782-4806,
  math-ph/9906007.
 
- Sahlmann H., Thiemann T., Towards the QFT on curved spacetime limit of QGR.
  I. A general scheme, Classical Quantum Gravity 23
  (2006), 867-908, gr-qc/0207030.
 
- Solodukhin S., Entanglement entropy of black holes, Living Rev.
  Relativity 14 (2011), 8, 96 pages, arXiv:1104.3712.
 
- Srednicki M., Entropy and area, Phys. Rev. Lett. 71 (1993),
  666-669, hep-th/9303048.
 
- Strominger A., Vafa C., Microscopic origin of the Bekenstein-Hawking
  entropy, Phys. Lett. B 379 (1996), 99-104,
  hep-th/9601029.
 
- 't Hooft G., On the quantum structure of a black hole, Nuclear Phys. B
  256 (1985), 727-745.
 
- Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs
  on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
 
- Thiemann T., Winkler O., Gauge field theory coherent states (GCS).
  II. Peakedness properties, Classical Quantum Gravity 18
  (2001), 2561-2636, hep-th/0005237.
 
- Varshalovich D.A., Moskalev A.N., Khersonskii V.K., Quantum theory of angular
  momentum, World Scientific Publishing Co. Inc., Teaneck, NJ, 1988.
 
 
 | 
 |