| 
 SIGMA 9 (2013), 015, 13 pages      arXiv:1301.1432     
https://doi.org/10.3842/SIGMA.2013.015 
On a Trivial Family of Noncommutative Integrable Systems
Andrey V. Tsiganov
 St. Petersburg State University, St. Petersburg, Russia
 
 
Received October 17, 2012, in final form February 18, 2013; Published online February 22, 2013 
Abstract
 
We discuss trivial deformations of the canonical Poisson brackets associated with the
Toda lattices, relativistic Toda lattices, Henon-Heiles, rational Calogero-Moser
and Ruijsenaars-Schneider systems and
apply one of these deformations to construct a new trivial family of noncommutative integrable
systems.
  
 Key words:
bi-Hamiltonian geometry; noncommutative integrable systems. 
pdf (321 kb)  
tex (19 kb)
 
 
References
 
- Abraham R., Marsden J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings
  Publishing Co. Inc., Reading, Mass., 1978.
 
- Arnol'd V.I., Mathematical methods of classical mechanics, Graduate
  Texts in Mathematics, Vol. 60, 2nd ed., Springer-Verlag, New York, 1989.
 
- Arsie A., Lorenzoni P., On bi-Hamiltonian deformations of exact pencils of
  hydrodynamic type, J. Phys. A: Math. Theor. 44 (2011),
  225205, 31 pages, arXiv:1101.0167.
 
- Ayadi V., Fehér L., Görbe T.F., Superintegrability of rational
  Ruijsenaars-Schneider systems and their action-angle duals,
  J. Geom. Symmetry Phys. 27 (2012), 27-44,
  arXiv:1209.1314.
 
- Benenti S., Chanu C., Rastelli G., The super-separability of the three-body
  inverse-square Calogero system, J. Math. Phys. 41 (2000),
  4654-4678.
 
- Broadbridge P., Chanu C.M., Miller Jr. W., Solutions of Helmholtz and
  Schrödinger equations with side condition and nonregular separation of
  variables, SIGMA 8 (2012), 089, 31 pages,
  arXiv:1209.2019.
 
- Calogero F., Solution of a three-body problem in one dimension,
  J. Math. Phys. 10 (1969), 2191-2196.
 
- Das A., Okubo S., A systematic study of the Toda lattice, Ann.
  Physics 190 (1989), 215-232.
 
- Degiovanni L., Magri F., Sciacca V., On deformation of Poisson manifolds of
  hydrodynamic type, Comm. Math. Phys. 253 (2005), 1-24,
  nlin.SI/0103052.
 
- Fernandes R.L., On the master symmetries and bi-Hamiltonian structure of the
  Toda lattice, J. Phys. A: Math. Gen. 26 (1993),
  3797-3803.
 
- Gonera C., Nutku Y., Super-integrable Calogero-type systems admit maximal
  number of Poisson structures, Phys. Lett. A 285 (2001),
  301-306, nlin.SI/0105056.
 
- Grammaticos B., Dorizzi B., Ramani A., Hamiltonians with high-order integrals
  and the "weak-Painlevé" concept, J. Math. Phys. 25
  (1984), 3470-3473.
 
- Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics
  Library, John Wiley & Sons Inc., New York, 1994.
 
- Grigoryev Yu.A., Tsiganov A.V., On the Darboux-Nijenhuis variables for the
  open Toda lattice, SIGMA 2 (2006), 097, 15 pages,
  nlin.SI/0701004.
 
- Grigoryev Yu.A., Tsiganov A.V., Separation of variables for the generalized
  Henon-Heiles system and system with quartic potential,
  J. Phys. A: Math. Theor. 44 (2011), 255202, 9 pages,
  arXiv:1012.0468.
 
- Grigoryev Yu.A., Tsiganov A.V., Symbolic software for separation of variables in
  the Hamilton-Jacobi equation for the L-systems, Regul.
  Chaotic Dyn. 10 (2005), 413-422, nlin.SI/0505047.
 
- Ibort A., The geometry of dynamics, Extracta Math. 11 (1996),
  80-105.
 
- Ibort A., Magri F., Marmo G., Bihamiltonian structures and Stäckel
  separability, J. Geom. Phys. 33 (2000), 210-228.
 
- Jacobi C.G.J., Vorlesungen über dynamik, G. Reimer, Berlin, 1884.
 
- Jost R., Poisson brackets (an unpedagogical lecture), Rev. Modern
  Phys. 36 (1964), 572-579.
 
- Khesin B., Tabachnikov S., Contact complete integrability, Regul.
  Chaotic Dyn. 15 (2010), 504-520, arXiv:0910.0375.
 
- Kuznetsov V.B., Tsiganov A.V., Separation of variables for the quantum
  relativistic Toda lattices, J. Math. Sci. 80 (1994),
  1802-1810, hep-th/9402111.
 
- Lichnerowicz A., Les variétés de Poisson et leurs algèbres de Lie
  associées, J. Differential Geometry 12 (1977), 253-300.
 
- Maciejewski A.J., Przybylska M., Tsiganov A.V., On algebraic construction of
  certain integrable and super-integrable systems, Phys. D
  240 (2011), 1426-1448, arXiv:1011.3249.
 
- Magri F., Casati P., Falqui G., Pedroni M., Eight lectures on integrable
  systems, in Integrability of Nonlinear Systems (Pondicherry, 1996),
  Lecture Notes in Phys., Vol. 495, Springer, Berlin, 1997, 256-296.
 
- Oevel W., Fuchssteiner B., Zhang H., Ragnisco O., Mastersymmetries, angle
  variables, and recursion operator of the relativistic Toda lattice,
  J. Math. Phys. 30 (1989), 2664-2670.
 
- Olver P.J., Rosenau P., Group-invariant solutions of differential equations,
  SIAM J. Appl. Math. 47 (1987), 263-278.
 
- Ovsiannikov L.V., Group analysis of differential equations, Academic Press
  Inc., New York, 1982.
 
- Suris Y.B., On the bi-Hamiltonian structure of Toda and relativistic Toda
  lattices, Phys. Lett. A 180 (1993), 419-429.
 
- Tempesta P., Tondo G., Generalized Lenard chains, separation of variables, and
  superintegrability, Phys. Rev. E 85 (2012), 046602,
  11 pages, arXiv:1205.6937.
 
- Tsiganov A.V., On bi-integrable natural Hamiltonian systems on Riemannian
  manifolds, J. Nonlinear Math. Phys. 18 (2011), 245-268,
  arXiv:1006.3914.
 
- Tsiganov A.V., On natural Poisson bivectors on the sphere,
  J. Phys. A: Math. Theor. 44 (2011), 105203, 21 pages,
  arXiv:1010.3492.
 
- Tsiganov A.V., On the Poisson structures for the nonholonomic Chaplygin and
  Veselova problems, Regul. Chaotic Dyn. 17 (2012),
  439-450.
 
- Tsiganov A.V., On two different bi-Hamiltonian structures for the Toda
  lattice, J. Phys. A: Math. Theor. 40 (2007), 6395-6406,
  nlin.SI/0701062.
 
- Waksjö C., Rauch-Wojciechowski S., How to find separation coordinates for
  the Hamilton-Jacobi equation: a criterion of separability for natural
  Hamiltonian systems, Math. Phys. Anal. Geom. 6 (2003),
  301-348.
 
 
 | 
 |