| 
 SIGMA 9 (2013), 023, 31 pages      arXiv:1303.3358     
https://doi.org/10.3842/SIGMA.2013.023 
Contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants and Applications” 
Object-Image Correspondence for Algebraic Curves under Projections
Joseph M. Burdis, Irina A. Kogan and Hoon Hong
 North Carolina State University, USA
 
 
Received October 01, 2012, in final form March 01, 2013; Published online March 14, 2013;
Proof of Theorem 4 corrected May 08, 2015; Equation (48) corrected March 10, 2019 
Abstract
 
We present a novel algorithm for deciding whether a given planar curve is an image of
a given spatial curve, obtained by a central or a parallel projection with unknown parameters.
The motivation comes from the problem of establishing a correspondence between an object and an
image, taken by a camera with unknown position and parameters.
A straightforward approach to this problem consists of setting up a system of conditions on the
projection parameters and then checking whether or not this system has a solution.
The computational advantage of the algorithm presented here, in comparison to algorithms based on
the straightforward approach, lies in a significant reduction of a number of real parameters that
need to be eliminated in order to establish existence or non-existence of a projection that maps
a given spatial curve to a given planar curve.
Our algorithm is based on projection criteria that reduce the projection problem to a certain
modification of the equivalence problem of planar curves under affine and projective
transformations.
To solve the latter problem we make an algebraic adaptation of signature construction that has been
used to solve the equivalence problems for smooth curves.
We introduce a notion of a classifying set of rational differential invariants and produce
explicit formulas for such invariants for the actions of the projective and the affine groups
on the plane.
  
 Key words:
central and parallel projections; finite and affine cameras; camera decomposition;
curves; classifying differential invariants; projective and affine transformations;
signatures; machine vision. 
pdf (797 kb)  
tex (637 kb)
      [previous version: 
pdf (799 kb)  
tex (630 kb)]
      [previous version: 
pdf (796 kb)  
tex (637 kb)]
 
 
References
 
- Arnold G., Stiller P.F., Mathematical aspects of shape analysis for object
  recognition, in Proceedings of IS&T/SPIE Joint Symposium "Visual
  Communications and Image Processing" (San Jose, CA, 2007), SPIE
  Proceedings, Vol. 6508, Editors C.W. Chen, D. Schonfeld, J. Luo, 2007,
  65080E, 11 pages.
 
- Arnold G., Stiller P.F., Sturtz K., Object-image metrics for generalized weak
  perspective projection, in Statistics and Analysis of Shapes, Model. Simul.
  Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2006, 253-279.
 
- Bix R., Conics and cubics. A concrete introduction to algebraic curves,
  Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1998.
 
- Blaschke W., Vorlesungen über Differentialgeometrie und geometrische
  Grundlagen von Einsteins Relativitätstheorie. II. Affine
  Differentialgeometrie, J. Springer, Berlin, 1923.
 
- Boutin M., Numerically invariant signature curves, Int. J. Comput.
  Vis. 40 (2000), 235-248, math-ph/9903036.
 
- Burdis J.M., Object-image correspondence under projections, Ph.D. thesis,
  North Carolina State University, 2010.
 
- Burdis J.M., Kogan I.A., Supplementary material for "Object-image correspondence for curves under projections",
  http://www.math.ncsu.edu/~iakogan/symbolic/projections.html.
 
- Burdis J.M., Kogan I.A., Object-image correspondence for curves under central
  and parallel projections, in Proceedings of the Symposium on Computational
  Geometry (Chapel Hill, NC, 2012), ACM, New York, 2012, 373-382.
 
- Calabi E., Olver P.J., Shakiban C., Tannenbaum A., Haker S., Differential and
  numerically invariant signature curves applied to object recognition,
  Int. J. Comput. Vis. 26 (1998), 107-135.
 
- Cartan E., La théorie des groupes finis et continus et la geómétrie
  différentielle traitées par la méthode du repère mobile,
  Gauthier-Villars, Paris, 1937.
 
- Caviness B.F., Johnson J.R. (Editors), Quantifier elimination and cylindrical
  algebraic decomposition, Texts and Monographs in Symbolic Computation,
  Springer-Verlag, Vienna, 1998.
 
- Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An
  introduction to computational algebraic geometry and commutative algebra, 2nd
  ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997.
 
- Faugeras O., Cartan's moving frame method and its application to the geometry
  and evolution of curves in the Euclidean, affine and projective planes,
  in Application of Invariance in Computer Vision, Springer-Verlag
  Lecture Notes in Computer Science, Vol. 825, Editors J.L. Mundy,
  A. Zisserman, D. Forsyth, Springer-Verlag, Berlin, 1994, 9-46.
 
- Faugeras O., Luong Q.T., The geometry of multiple images. The laws that govern
  the formation of multiple images of a scene and some of their applications,
  MIT Press, Cambridge, MA, 2001.
 
- Feldmar J., Ayache N., Betting F., 3D-2D projective registration of free-form
  curves and surfaces, in Proceedings of the Fifth International Conference on
  Computer Vision (ICCV'95), IEEE Computer Society, Washington, 1995, 549-556.
 
- Feng S., Kogan I., Krim H., Classification of curves in 2D and 3D via
  affine integral signatures, Acta Appl. Math. 109 (2010),
  903-937, arXiv:0806.1984.
 
- Fulton W., Algebraic curves. An introduction to algebraic geometry, Advanced
  Book Classics, Addison-Wesley Publishing Company, Redwood City, CA, 1989.
 
- Guggenheimer H.W., Differential geometry, McGraw-Hill, New York, 1963.
 
- Hann C.E., Hickman M.S., Projective curvature and integral invariants,
  Acta Appl. Math. 74 (2002), 177-193.
 
- Hartley R., Zisserman A., Multiple view geometry in computer vision, Cambridge
  University Press, Cambridge, 2001.
 
- Hoff D., Olver P.J., Extensions of invariant signatures for object
  recognition, J. Math. Imaging Vision 45 (2013), 176-185.
 
- Hong H. (Editor), Special issue on computational quantifier elimination, Comput. J.
36 (1993).
 
- Hubert E., Kogan I.A., Smooth and algebraic invariants of a group action: local
  and global constructions, Found. Comput. Math. 7 (2007),
  455-493.
 
- Kogan I.A., Two algorithms for a moving frame construction, Canad. J.
  Math. 55 (2003), 266-291.
 
- Musso E., Nicolodi L., Invariant signatures of closed planar curves,
  J. Math. Imaging Vision 35 (2009), 68-85.
 
- Olver P.J., Applications of Lie groups to differential equations,
Graduate Texts in Mathematics, Vol. 107, 2nd ed., Springer-Verlag,
  New York, 1993.
 
- Olver P.J., Joint invariant signatures, Found. Comput. Math.
  1 (2001), 3-67.
 
- Popov V.L., Vinberg E.B., Invariant theory, in Algebraic geometry. IV. Linear
  algebraic groups. Invariant theory, Encyclopaedia of Mathematical
  Sciences, Vol. 55, Editors A.N. Parshin, I.R. Shafarevich, Springer-Verlag,
  Berlin, 1994, 122-278.
 
- Sato J., Cipolla R., Affine integral invariants for extracting symmetry
  axes, Image Vision Comput. 15 (1997), 627-635.
 
- Tarski A., A decision method for elementary algebra and geometry, 2nd ed.,
  University of California Press, Berkeley, 1951.
 
- Taubin G., Cooper D.B., Object recognition based on moment (or algebraic)
  invariants, in Geometric Invariance in Computer Vision, Editors J.L. Mundy,
  A. Zisserman, Artificial Intelligence, MIT Press, Cambridge, MA, 1992,
  375-397.
 
- Van Gool L.J., Moons T., Pauwels E., Oosterlinck A., Semi-differential
  invariants, in Geometric Invariance in Computer Vision, Editors J.L. Mundy,
  A. Zisserman, Artificial Intelligence, MIT Press, Cambridge, MA, 1992,
  157-192.
 
- Xu D., Li H., 3-D affine moment invariants generated by geometric
  primitives, in Proceedings of 18th International Conference on Pattern
  Recognition, Vol. 2, IEEE Computer Society, Washington, 2008, 544-547.
 
 
 | 
 |