| 
 SIGMA 9 (2013), 026, 23 pages      arXiv:1303.3434     
https://doi.org/10.3842/SIGMA.2013.026 
Contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants and Applications” 
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
José F. Cariñena a, Partha Guha b and Javier de Lucas c
 a) Department of Theoretical Physics and IUMA, University of Zaragoza, Pedro Cerbuna 12, 50.009, Zaragoza, Spain
 b) S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata - 700.098, India
 c) Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Wóy-cickiego 1/3, 01-938, Warsaw, Poland
 
 
Received September 26, 2012, in final form March 14, 2013; Published online March 26, 2013 
Abstract
 
A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables
transforming members of an associated family of systems of first-order differential equations into members of the
same family.
In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way.
This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the
previous literature, and other relevant differential equations, which leads to derive new constants of motion for
families of second-order Gambier equations.
Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions
of Riccati equations, linear systems, and t-dependent frequency harmonic oscillators.
  
 Key words:
Lie system; Kummer-Schwarz equation; Milne-Pinney equation; quasi-Lie scheme; quasi-Lie system;
second-order Gambier equation; second-order Riccati equation; superposition rule. 
pdf (484 kb)  
tex (34 kb)
 
 
References
 
- Anderson R.L., Harnad J., Winternitz P., Group theoretical approach to
  superposition rules for systems of Riccati equations, Lett. Math.
  Phys. 5 (1981), 143-148.
 
- Beckers J., Gagnon L., Hussin V., Winternitz P., Nonlinear differential
  equations and Lie superalgebras, Lett. Math. Phys. 13
  (1987), 113-120.
 
- Beckers J., Gagnon L., Hussin V., Winternitz P., Superposition formulas for
  nonlinear superequations, J. Math. Phys. 31 (1990),
  2528-2534.
 
- Berkovich L.M., Canonical forms of ordinary linear differential equations,
  Arch. Math. (Brno) 24 (1988), 25-42.
 
- Berkovich L.M., The generalized Emden-Fowler equation, in Proceedinds of
  Second International Conference "Symmetry in Nonlinear Mathematical
  Physics" (Kyiv, 1997), Editors M.I. Shkil, A.G. Nikitin, V.M. Boyko,
  Institute of Mathematics, Kyiv, 1997, 155-163.
 
- Blázquez-Sanz D., Morales-Ruiz J.J., Lie's reduction method and
  differential Galois theory in the complex analytic context,
  Discrete Contin. Dyn. Syst. 32 (2012), 353-379,
  arXiv:0901.4479.
 
- Blázquez-Sanz D., Morales-Ruiz J.J., Local and global aspects of Lie
  superposition theorem, J. Lie Theory 20 (2010), 483-517,
  arXiv:0901.4478.
 
- Bouquet S.E., Feix M.R., Leach P.G.L., Properties of second-order ordinary
  differential equations invariant under time translation and self-similar
  transformation, J. Math. Phys. 32 (1991), 1480-1490.
 
- Cariñena J.F., de Lucas J., Lie systems: theory, generalisations, and
  applications, Dissertationes Math. 479 (2011), 162 pages,
  arXiv:1103.4166.
 
- Cariñena J.F., de Lucas J., Superposition rules and second-order Riccati
  equations, J. Geom. Mech. 3 (2011), 1-22,
  arXiv:1007.1309.
 
- Cariñena J.F., de Lucas J., Rañada M.F., A geometric approach to
  integrability of Abel differential equations, Internat. J. Theoret.
  Phys. 50 (2011), 2114-2124, arXiv:1012.2257.
 
- Cariñena J.F., de Lucas J., Rañada M.F., Recent applications of the
  theory of Lie systems in Ermakov systems, SIGMA 4
  (2008), 031, 18 pages, arXiv:0803.1824.
 
- Cariñena J.F., de Lucas J., Sardón C., A new Lie-systems approach to
  second-order Riccati equations, Int. J. Geom. Methods Mod. Phys.
  9 (2012), 1260007, 8 pages, arXiv:1110.3298.
 
- Cariñena J.F., de Lucas J., Sardón C., Lie-Hamilton systems: theory and applications,
Int. J. Geom. Methods Mod. Phys., to appear,
  arXiv:1211.6991.
 
- Cariñena J.F., Grabowski J., de Lucas J., Quasi-Lie schemes: theory and
  applications, J. Phys. A: Math. Theor. 42 (2009), 335206,
  20 pages, arXiv:0810.1160.
 
- Cariñena J.F., Grabowski J., de Lucas J., Superposition rules for higher
  order systems and their applications, J. Phys. A: Math. Theor.
  45 (2012), 185202, 26 pages, arXiv:1111.4070.
 
- Cariñena J.F., Grabowski J., Marmo G., Lie-Scheffers systems:
  a geometric approach, Bibliopolis, Naples, 2000.
 
- Cariñena J.F., Grabowski J., Marmo G., Superposition rules, Lie theorem,
  and partial differential equations, Rep. Math. Phys. 60
  (2007), 237-258, math-ph/0610013.
 
- Cariñena J.F., Grabowski J., Ramos A., Reduction of time-dependent systems
  admitting a superposition principle, Acta Appl. Math. 66
  (2001), 67-87.
 
- Cariñena J.F., Leach P.G.L., de Lucas J., Quasi-Lie schemes and
  Emden-Fowler equations, J. Math. Phys. 50 (2009),
  103515, 21 pages, arXiv:0908.2236.
 
- Cariñena J.F., Marmo G., Nasarre J., The nonlinear superposition principle
  and the Wei-Norman method, Internat. J. Modern Phys. A
  13 (1998), 3601-3627, physics/9802041.
 
- Cariñena J.F., Ramos A., Integrability of the Riccati equation from a
  group-theoretical viewpoint, Internat. J. Modern Phys. A 14
  (1999), 1935-1951, math-ph/9810005.
 
- Cariñena J.F., Rañada M.F., Santander M., Lagrangian formalism for
  nonlinear second-order Riccati systems: one-dimensional integrability and
  two-dimensional superintegrability, J. Math. Phys. 46
  (2005), 062703, 18 pages, math-ph/0505024.
 
- Conte R., Singularities of differential equations and integrability, in An
  Introduction to Methods of Complex Analysis and Geometry for Classical
  Mechanics and Non-Linear Waves (Chamonix, 1993), Frontières, Gif, 1994,
  49-143.
 
- Ermakov V.P., Second-order differential equations: conditions of complete
  integrability, Appl. Anal. Discrete Math. 2 (2008),
  123-145.
 
- Flores-Espinoza R., Periodic first integrals for Hamiltonian systems of Lie
  type, Int. J. Geom. Methods Mod. Phys. 8 (2011),
  1169-1177, arXiv:1004.1132.
 
- Flores-Espinoza R., de Lucas J., Vorobiev Y.M., Phase splitting for periodic
  Lie systems, J. Phys. A: Math. Theor. 43 (2010), 205208,
  11 pages, arXiv:0910.2575.
 
- González-López A., Kamran N., Olver P.J., Lie algebras of vector fields
  in the real plane, Proc. London Math. Soc. (3) 64 (1992),
  339-368.
 
- Grabowski J., de Lucas J., Mixed superposition rules and the Riccati
  hierarchy, J. Differential Equations 254 (2013), 179-198,
  arXiv:1203.0123.
 
- Grammaticos B., Ramani A., Lafortune S., The Gambier mapping, revisited,
  Phys. A 253 (1998), 260-270, solv-int/9804011.
 
- Grundland A.M., Levi D., On higher-order Riccati equations as Bäcklund
  transformations, J. Phys. A: Math. Gen. 32 (1999),
  3931-3937.
 
- Guha P., Ghose Choudhury A., Grammaticos B., Dynamical studies of equations
  from the Gambier family, SIGMA 7 (2011), 028, 15 pages,
  arXiv:1103.4210.
 
- Harnad J., Winternitz P., Anderson R.L., Superposition principles for matrix
  Riccati equations, J. Math. Phys. 24 (1983), 1062-1072.
 
- Ibragimov N.H., Utilization of canonical variables for integration of systems
  of first-order differential equations, Arch. ALGA 6 (2009),
  1-18.
 
- Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
 
- Inselberg A., Superpositions for nonlinear operators. I. Strong
  superpositions and linearizability, J. Math. Anal. Appl. 40
  (1972), 494-508.
 
- Karasu A., Leach P.G.L., Nonlocal symmetries and integrable ordinary
  differential equations: x''+3xx'+x3=0 and its generalizations,
  J. Math. Phys. 50 (2009), 073509, 17 pages.
 
- Königsberger L., Über die einer beliebigen Differentialgleichung erster
  Ordnung angehörigen selbständigen Trascendenten, Acta Math.
  3 (1883), 1-48.
 
- Lafortune S., Grammaticos B., Ramani A., Constructing integrable third-order
  systems: the Gambier approach, Inverse Problems 14
  (1998), 287-298, solv-int/9705007.
 
- Lafortune S., Grammaticos B., Ramani A., Winternitz P., Discrete systems
  related to some equations of the Painlevé-Gambier classification,
  Phys. Lett. A 270 (2000), 55-61, nlin.SI/0104019.
 
- Lax P.D., Integrals of nonlinear equations of evolution and solitary waves,
 Comm. Pure Appl. Math. 21 (1968), 467-490.
 
- Leach P.G.L., Feix M.R., Bouquet S., Analysis and solution of a nonlinear
  second-order differential equation through rescaling and through a dynamical
  point of view, J. Math. Phys. 29 (1988), 2563-2569.
 
- Leach P.G.L., Govinder K.S., On the uniqueness of the Schwarzian and
  linearisation by nonlocal contact transformation, J. Math. Anal.
  Appl. 235 (1999), 84-107.
 
- Levi D., Ragnisco O. (Editors), SIDE III - symmetries and integrability of
  difference equations, CRM Proceedings & Lecture Notes, Vol. 25,
  Amer. Math. Soc., Providence, RI, 2000.
 
- Lie S., Theorie der Transformationsgruppen I, Math. Ann.
  16 (1880), 441-528.
 
- Lie S., Scheffers G., Vorlesungen über continuierliche Gruppen mit
  geometrischen und anderen Anwendungen, Teubner, Leipzig, 1893.
 
- Olver P.J., Applications of Lie groups to differential equations,
  Graduate Texts in Mathematics, Vol. 107, 2nd ed., Springer-Verlag,
  New York, 1993.
 
- Olver P.J., Symmetry and explicit solutions of partial differential equations,
  Appl. Numer. Math. 10 (1992), 307-324.
 
- Olver P.J., Rosenau P., Group-invariant solutions of differential equations,
  SIAM J. Appl. Math. 47 (1987), 263-278.
 
- Pickering A., The singular manifold method revisited, J. Math. Phys.
  37 (1996), 1894-1927.
 
- Pietrzkowski G., Explicit solutions of the  a1-type
  Lie-Scheffers system and a general Riccati equation, J. Dyn.
  Control Syst. 18 (2012), 551-571.
 
- Pinney E., The nonlinear differential equation y"+p(x)y+cy−3=0,
  Proc. Amer. Math. Soc. 1 (1950), 681.
 
- Rourke D.E., Augustine M., Exact linearization of the radiation-damped spin system,
  Phys. Rev. Lett. 84 (2000), 1685-1688.
 
- Shnider S., Winternitz P., Classification of systems of nonlinear ordinary
  differential equations with superposition principles, J. Math. Phys.
  25 (1984), 3155-3165.
 
- Vessiot E., Sur une classe d'équations différentielles, Ann. Sci.
  École Norm. Sup. (3) 10 (1893), 53-64.
 
- Winternitz P., Lie groups and solutions of nonlinear differential equations, in
  Nonlinear Phenomena (Oaxtepec, 1982), Lecture Notes in Phys., Vol. 189, Springer, Berlin, 1983, 263-331.
 
 
 | 
 |