| 
 SIGMA 9 (2013), 030, 16 pages      arXiv:1212.4462     
https://doi.org/10.3842/SIGMA.2013.030 
Pentagon Relations in Direct Sums and Grassmann Algebras
Igor G. Korepanov and Nurlan M. Sadykov
 Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Str., Moscow 107996, Russia
 
 
Received December 19, 2012, in final form April 05, 2013; Published online April 10, 2013 
Abstract
 
We construct vast families of orthogonal operators obeying pentagon relation in a direct sum of
three n-dimensional vector spaces.
As a consequence, we obtain pentagon relations in Grassmann algebras, making a far reaching generalization
of exotic Reidemeister torsions.
  
 Key words:
Pachner moves; pentagon relations; Grassmann algebras. 
pdf (412 kb)  
tex (39 kb)
 
 
References
 
- Berezin F.A., The method of second quantization, Pure and Applied
  Physics, Vol. 24, Academic Press, New York, 1966.
 
- Doliwa A., Sergeev S.M., The pentagon relation and incidence geometry,
  arXiv:1108.0944.
 
- Gantmacher F.R., The theory of matrices, Vol. II, Chelsea, New York, 1974.
 
- Kashaev R.M., On discrete three-dimensional equations associated with the local
  Yang-Baxter relation, Lett. Math. Phys. 38 (1996),
  389-397, solv-int/9512005.
 
- Kashaev R.M., On matrix generalizations of the dilogarithm, Theoret.
  and Math. Phys. 118 (1999), 314-318.
 
- Kashaev R.M., Korepanov I.G., Sergeev S.M., The functional tetrahedron
  equation, Theoret. and Math. Phys. 117 (1998), 1402-1413,
  solv-int/9801015.
 
- Korepanov I.G., A dynamical system connected with inhomogeneous 6-vertex
  model, J. Math. Sci. 85 (1997), 1671-1683,
  hep-th/9402043.
 
- Korepanov I.G., Relations in Grassmann algebra corresponding to three- and
  four-dimensional Pachner moves, SIGMA 7 (2011), 117,
  23 pages, arXiv:1105.0782.
 
- Korepanov I.G., Two deformations of a fermionic solution to pentagon equation,
  arXiv:1104.3487.
 
- Kuniba A., Sergeev S.M., Tetrahedron equation and quantum R matrices for spin
  representations of Bn(1), Dn(1) and Dn+1(2),
  arXiv:1203.6436.
 
- Lickorish W.B.R., Simplicial moves on complexes and manifolds, in Proceedings
  of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr.,
  Vol. 2, Geom. Topol. Publ., Coventry, 1999, 299-320,
  math.GT/9911256.
 
- Pachner U., P.L. homeomorphic manifolds are equivalent by elementary
  shellings, European J. Combin. 12 (1991), 129-145.
 
- Sergeev S.M., Quantization of three-wave equations, J. Phys. A: Math.
  Theor. 40 (2007), 12709-12724, nlin.SI/0702041.
 
- Sergeev S.M., Quantum curve in q-oscillator model, Int. J. Math.
  Math. Sci. 2006 (2006), Art. ID 92064, 31 pages,
  nlin.SI/0510048.
 
- Takagi T., On an algebraic problem related to an analytic theorem of
  Carathéodory and Fejér and on an allied theorem of Landau,
  Japan J. Math. 1 (1924), 83-93.
 
- Takagi T., Remarks on an algebraic problem, Japan J. Math. 2
  (1925), 13-17.
 
 
 | 
 |