| 
 SIGMA 9 (2013), 035, 16 pages      arXiv:1212.1952     
https://doi.org/10.3842/SIGMA.2013.035 
On Addition Formulae of KP, mKP and BKP Hierarchies
Yoko Shigyo
 Department of Mathematics, Tsuda College, Kodaira, Tokyo, 187-8577, Japan
 
 
Received December 12, 2012, in final form April 04, 2013; Published online April 23, 2013 
Abstract
 
In this paper we study the addition formulae of the KP, the mKP and the BKP hierarchies.
We prove that the total hierarchies are equivalent to the simplest equations of their addition formulae.
In the case of the KP and the mKP hierarchies those results had previously been proved by Noumi, Takasaki and Takebe by
way of wave functions.
Here we give alternative and direct proofs for the case of the KP and mKP hierarchies.
Our method can equally be applied to the BKP hierarchy.
  
 Key words:
KP hierarchy; modified KP hierarchy; BKP hierarchy. 
pdf (369 kb)  
tex (18 kb)
 
 
References
 
- Bobenko A.I., Suris Yu.B., Discrete differential geometry. Integrable structure,
  Graduate Studies in Mathematics, Vol. 98, Amer. Math. Soc.,
  Providence, RI, 2008.
 
- Buchstaber V.M., Enolski V.Z., Leykin D.V., Kleinian functions, hyperelliptic
  Jacobians and applications, Rev. Math and Math. Phys. 10
  (1997), no. 2, 1-125, solv-int/9603005.
 
- Date E., Jimbo M., Miwa T., Method for generating discrete soliton
  equations. I, J. Phys. Soc. Japan 51 (1982), 4116-4124.
 
- Date E., Jimbo M., Miwa T., Method for generating discrete soliton
  equations. II, J. Phys. Soc. Japan 51 (1982), 4125-4131.
 
- Date E., Jimbo M., Miwa T., Method for generating discrete soliton
  equations. V, J. Phys. Soc. Japan 52 (1982), 766-771.
 
- Date E., Kashiwara M., Jimbo M., Miwa T., Transformation groups for soliton
  equations, in Nonlinear Integrable Systems - Classical Theory and Quantum
  Theory (Kyoto, 1981), World Sci. Publishing, Singapore, 1983, 39-119.
 
- Eilbeck J.C., Enolski V.Z., Gibbons J., Sigma, tau and Abelian functions of
  algebraic curves, J. Phys. A: Math. Theor. 43 (2010),
  455216, 20 pages, arXiv:1006.5219.
 
- Fay J.D., Theta functions on Riemann surfaces, Lecture Notes in
  Mathematics, Vol. 352, Springer-Verlag, Berlin, 1973.
 
- Hirota R., Generalizations of determinant identities by Pfaffian, in
  Mathematical Theories and Applications of Nonlinear Waves and Nonlinear
  Dynamics, Research Institute for Applied Mechanics, Kyushu University, 2004, 148-156.
 
- Hirota R., The direct method in soliton theory, Cambridge Tracts in
  Mathematics, Vol. 155, Cambridge University Press, Cambridge, 2004.
 
- Inoguchi J., Kajiwara K., Matsuura N., Ohta Y., Explicit solutions to the
  semi-discrete modified KdV equation and motion of discrete plane curves,
  arXiv:1108.1328.
 
- Jimbo M., Miwa T., Solitons and infinite-dimensional Lie algebras,
  Publ. Res. Inst. Math. Sci. 19 (1983), 943-1001.
 
- Miwa T., Jimbo M., Date E.,
Solitons. Differential equations, symmetries and infinite-dimensional algebras,
Cambridge Tracts in Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2000.
 
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford
  Mathematical Monographs, The Clarendon Press, Oxford University Press, New
  York, 1995.
 
- Miwa T., On Hirota's difference equations, Proc. Japan Acad. Ser. A
  Math. Sci. 58 (1982), 9-12.
 
- Nakayashiki A., Sigma function as a tau function, Int. Math. Res. Not.
  2010 (2010), no. 3, 373-394, arXiv:0904.0846.
 
- Noumi M., Takebe T., Algebraic analysis of integrable hierarchies, in
  preparation.
 
- Ohta Y., Bilinear theory of solitons with Pfaffian labels,
  Sūurikaisekikenkyūusho Kōokyūuroku  (1993), no. 822, 197-205.
 
- Raina A.K., Fay's trisecant identity and conformal field theory, Comm.
  Math. Phys. 122 (1989), 625-641.
 
- Sato M., Sato Y., Soliton equations as dynamical systems on infinite
  dimensional Grassmann manifold, in Nonlinear PDE in Applied Science,
  North-Holland Math. Stud., Vol. 81, Editors H. Fujita, P. Lax,
  G. Strang, Tokyo, 1982, 259-271.
 
- Takasaki K., Differential Fay identities and auxiliary linear problem of
  integrable hierarchies, in Exploring New Structures and Natural Constructions
  in Mathematical Physics, Adv. Stud. Pure Math., Vol. 61, Math. Soc.
  Japan, Tokyo, 2011, 387-441, arXiv:0710.5356.
 
- Takasaki K., Dispersionless Hirota equations of two-component BKP
  hierarchy, SIGMA 2 (2006), 057, 22 pages,
  nlin.SI/0604003.
 
- Takasaki K., Takebe T., Integrable hierarchies and dispersionless limit,
  Rev. Math. Phys. 7 (1995), 743-808,
  hep-th/9405096.
 
- Teo L.P., Fay-like identities of the Toda lattice hierarchy and its
  dispersionless limit, Rev. Math. Phys. 18 (2006),
  1055-1073, nlin.SI/0606059.
 
 
 | 
 |