| 
 SIGMA 9 (2013), 042, 26 pages      arXiv:1209.6047     
https://doi.org/10.3842/SIGMA.2013.042 
Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
Howard S. Cohl
 Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8910, USA
 
 
Received November 29, 2012, in final form May 28, 2013; Published online June 05, 2013 
Abstract
 
We develop complex Jacobi, Gegenbauer
and Chebyshev polynomial expansions for the kernels associated with
power-law fundamental solutions of the polyharmonic equation
on d-dimensional Euclidean space.
From these series representations we derive Fourier expansions in
certain rotationally-invariant coordinate
systems and Gegenbauer polynomial expansions in Vilenkin's polyspherical
coordinates.  We compare both of these
expansions to generate addition theorems
for the azimuthal Fourier coefficients.
  
 Key words:
fundamental solutions; polyharmonic equation;
Jacobi polynomials; Gegenbauer polynomials; Chebyshev polynomials;
eigenfunction expansions; separation of variables; addition theorems. 
pdf (739 kb)  
tex (199 kb)
 
 
References
 
- Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas,
  graphs, and mathematical tables, National Bureau of Standards Applied
  Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington,
  D.C., 1964.
 
- Alonso Izquierdo A., Fuertes W.G., de la Torre Mayado M., Guilarte J.M.,
  One-loop corrections to the mass of self-dual semi-local planar topological
  solitons, Nuclear Phys. B 797 (2008), 431-463,
  arXiv:0707.4592.
 
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of
  Mathematics and its Applications, Vol. 71, Cambridge University Press,
  Cambridge, 1999.
 
- Boyling J.B., Green's functions for polynomials in the Laplacian,
  Z. Angew. Math. Phys. 47 (1996), 485-492.
 
- Cohl H.S., Erratum: Developments in determining the gravitational potential
  using toroidal functions, Astronom. Nachr. 333 (2012),
  784-785.
 
- Cohl H.S., Fourier and Gegenbauer expansions for fundamental solutions of the
  Laplacian and powers in Rd and Hd, Ph.D.   thesis, The University of Auckland, Auckland, New Zealand, 2010.
 
- Cohl H.S., Fourier expansions for a logarithmic fundamental solution of the
  polyharmonic equation, arXiv:1202.1811.
 
- Cohl H.S., Dominici D.E., Generalized Heine's identity for complex Fourier
  series of binomials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
  Sci. 467 (2011), 333-345, arXiv:0912.0126.
 
- Cohl H.S., Kalnins E.G., Fourier and Gegenbauer expansions for a fundamental
  solution of the Laplacian in the hyperboloid model of hyperbolic geometry,
  J. Phys. A: Math. Theor. 45 (2012), 145206, 32 pages,
  arXiv:1105.0386.
 
- Cohl H.S., Rau A.R.P., Tohline J.E., Browne D.A., Cazes J.E., Barnes E.I.,
  Useful alternative to the multipole expansion of 1/r potentials,
  Phys. Rev. A 64 (2001), 052509, 5 pages,
  arXiv:1104.1499.
 
- Cohl H.S., Tohline J.E., Rau A.R.P., Srivastava H.M., Developments in
  determining the gravitational potential using toroidal functions,
  Astronom. Nachr. 321 (2000), 363-372.
 
- Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to algorithms,
  2nd ed., MIT Press, Cambridge, MA, 2001.
 
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher
  transcendental functions, Vol. II, McGraw-Hill, New York - Toronto -
  London, 1953.
 
- Fano U., Rau A.R.P., Symmetries in quantum physics, Academic Press Inc., San
  Diego, CA, 1996.
 
- Gel'fand I.M., Shilov G.E., Generalized functions. Vol. I. Properties and
  operations, Academic Press, New York, 1964.
 
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 7th
  ed., Elsevier/Academic Press, Amsterdam, 2007.
 
- Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable,
  Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge
  University Press, Cambridge, 2005.
 
- Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of
  Lie algebras and separation of variables. The n-dimensional sphere,
  J. Math. Phys. 40 (1999), 1549-1573.
 
- Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of
  Lie algebras and the separation of variables: interbase expansions,
  J. Phys. A: Math. Gen. 34 (2001), 521-554.
 
- Kil'dyushov M.S., Hyperspherical functions of the "tree" type in the n-body
  problem, Soviet J. Nuclear Phys. 15 (1972), 113-118.
 
- Koekoek  J., Koekoek  R.,
 The Jacobi inversion formula,
 Complex Variables Theory Appl. 39  (1999), 1-18,
 math.CA/9908148.
 
- Lake M., Thomas S., Ward J., Non-topological cycloops, J. Cosmol.
  Astropart. Phys. 2010 (2010), no. 1, 026, 27 pages,
  arXiv:0911.3118.
 
- Lin C.D., Hyperspherical coordinate approach to atomic and other Coulombic
  three-body systems, Phys. Rep. 257 (1995), 1-83.
 
- Lin F., Yang Y., Energy splitting, substantial inequality, and minimization for
  the Faddeev and Skyrme models, Comm. Math. Phys. 269
  (2007), 137-152.
 
- Magnus W., Oberhettinger F., Soni R.P., Formulas and theorems for the special
  functions of mathematical physics, 3rd ed., Die Grundlehren der
  mathematischen Wissenschaften, Bd. 52, Springer-Verlag, New York, 1966.
 
- Miller Jr. W., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications,
Vol. 4, Addison-Wesley Publishing Co., Reading,
Mass. - London - Amsterdam, 1977.
 
- Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook
  of mathematical functions, U.S. Department of Commerce National Institute of
  Standards and Technology, Washington, DC, 2010.
 
- Schwartz L., Théorie des distributions. Tome I, Actualités Sci. Ind.,
  no. 1091, Hermann & Cie., Paris, 1950.
 
- Sloane N.J.A., Plouffe S., The encyclopedia of integer sequences, Academic
  Press Inc., San Diego, CA, 1995.
 
- Stanley R.P., Enumerative combinatorics. Vol. 2, Cambridge Studies in
  Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.
 
- Szegö G., Orthogonal polynomials, American Mathematical Society
  Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, R.I., 1959.
 
- Vilenkin N.Ja., Special functions and the theory of group representations,
  Translations of Mathematical Monographs, Vol. 22, Amer. Math. Soc.,
  Providence, R.I., 1968.
 
- Vilenkin N.Ja., Klimyk A.U., Representation of Lie groups and special
  functions. Vol. 2. Class I representations, special functions, and integral
  transforms, Mathematics and its Applications (Soviet Series),
  Vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1993.
 
- Vilenkin N.Ja., Kuznetsov G.I., Smorodinskiĭ Ya.A., Eigenfunctions of the
  Laplace operator providing representations of the U(2),  SU(2), SO(3), U(3) and SU(3) groups and the
  symbolic method, Soviet J. Nuclear Phys. 2 (1965),
  645-652.
 
- Wen Z.Y., Avery J., Some properties of hyperspherical harmonics,
  J. Math. Phys. 26 (1985), 396-403.
 
 
 | 
 |