| 
 SIGMA 9 (2013), 052, 23 pages      arXiv:1209.5028     
https://doi.org/10.3842/SIGMA.2013.052 
Contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants and Applications” 
Invariant Discretization Schemes Using Evolution-Projection Techniques
Alexander Bihlo a, b and Jean-Christophe Nave b
 a) Centre de recherches mathématiques, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (QC) H3C 3J7, Canada
 b) Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montréal (QC) H3A 2K6, Canada
 
 
Received September 27, 2012, in final form July 28, 2013; Published online August 01, 2013 
Abstract
 
Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy.
  
 Key words:
invariant numerical schemes; moving frame; evolution-projection method; heat equation. 
pdf (639 kb)  
tex (252 kb)
 
 
References
 
- Bakirova M.I., Dorodnitsyn V.A., Kozlov R.V., Symmetry-preserving difference
  schemes for some heat transfer equations, J. Phys. A: Math. Gen.
  30 (1997), 8139-8155, math.NA/0402367.
 
- Bihlo A., Popovych R.O., Invariant discretization schemes for the shallow-water
  equations, SIAM J. Sci. Comput. 34 (2012), B810-B839,
  arXiv:1201.0498.
 
- Bluman G.W., Kumei S., Symmetries and differential equations, Applied
  Mathematical Sciences, Vol. 81, Springer-Verlag, New York, 1989.
 
- Bridges T.J., Reich S., Numerical methods for Hamiltonian PDEs,
  J. Phys. A: Math. Gen. 39 (2006), 5287-5320.
 
- Budd C., Dorodnitsyn V., Symmetry-adapted moving mesh schemes for the nonlinear
  Schrödinger equation, J. Phys. A: Math. Gen. 34 (2001),
  10387-10400.
 
- Budd C.J., Huang W., Russell R.D., Moving mesh methods for problems with
  blow-up, SIAM J. Sci. Comput. 17 (1996), 305-327.
 
- Budd C.J., Huang W., Russell R.D., Adaptivity with moving grids, Acta
  Numer. 18 (2009), 111-241.
 
- Budd C.J., Iserles A., Geometric integration: numerical solution of
  differential equations on manifolds, R. Soc. Lond. Philos. Trans.
  Ser. A Math. Phys. Eng. Sci. 357 (1999), 945-956.
 
- Cheh J., Olver P.J., Pohjanpelto J., Algorithms for differential invariants of
  symmetry groups of differential equations, Found. Comput. Math.
  8 (2008), 501-532.
 
- Chhay M., Hamdouni A., A new construction for invariant numerical schemes using
  moving frames, C. R. Mécanique 338 (2010), 97-101.
 
- Chhay M., Hoarau E., Hamdouni A., Sagaut P., Comparison of some
  Lie-symmetry-based integrators, J. Comput. Phys. 230
  (2011), 2174-2188.
 
- Dawes A.S., Invariant numerical methods, Internat. J. Numer. Methods
  Fluids 56 (2008), 1185-1191.
 
- Dorodnitsyn V., Applications of Lie groups to difference equations,
  Differential and Integral Equations and Their Applications, Vol. 8,
  CRC Press, Boca Raton, FL, 2011.
 
- Dorodnitsyn V., Kozlov R., A heat transfer with a source: the complete set of
  invariant difference schemes, J. Nonlinear Math. Phys. 10
  (2003), 16-50, math.AP/0309139.
 
- Fels M., Olver P.J., Moving coframes. I. A practical algorithm,
  Acta Appl. Math. 51 (1998), 161-213.
 
- Fels M., Olver P.J., Moving coframes. II. Regularization and theoretical
  foundations, Acta Appl. Math. 55 (1999), 127-208.
 
- Fornberg B., A practical guide to pseudospectral methods, Cambridge
  Monographs on Applied and Computational Mathematics, Vol. 1, Cambridge
  University Press, Cambridge, 1996.
 
- Frank J., Gottwald G., Reich S., A Hamiltonian particle-mesh method for the
  rotating shallow-water equations, in Meshfree Methods for Partial
  Differential Equations (Bonn, 2001), Lect. Notes Comput. Sci.
  Eng., Vol. 26, Editors M. Griebel, M.A. Schweitzer, T.J. Barth, M. Griebel,
  D.E. Keyes, R.M. Nieminen, D. Roose, T. Schlick, Springer, Berlin, 2003,
  131-142.
 
- Hairer E., Lubich C., Wanner G., Geometric numerical integration:
  structure-preserving algorithms for ordinary differential equations,
  Springer Series in Computational Mathematics, Vol. 31, 2nd ed.,
  Springer-Verlag, Berlin, 2006.
 
- Huang W., Russell R.D., Adaptive moving mesh methods, Applied
  Mathematical Sciences, Vol. 174, Springer, New York, 2011.
 
- Kim P., Invariantization of numerical schemes using moving frames, BIT
  47 (2007), 525-546.
 
- Kim P., Invariantization of the Crank-Nicolson method for Burgers'
  equation, Phys. D 237 (2008), 243-254.
 
- Kim P., Olver P.J., Geometric integration via multi-space, Regul.
  Chaotic Dyn. 9 (2004), 213-226.
 
- Leimkuhler B., Reich S., Simulating Hamiltonian dynamics, Cambridge
  Monographs on Applied and Computational Mathematics, Vol. 14, Cambridge
  University Press, Cambridge, 2004.
 
- Levi D., Winternitz P., Continuous symmetries of difference equations,
  J. Phys. A: Math. Gen. 39 (2006), R1-R63,
  nlin.SI/0502004.
 
- Olver P.J., Applications of Lie groups to differential equations,
  Graduate Texts in Mathematics, Vol. 107, 2nd ed., Springer-Verlag,
  New York, 1993.
 
- Olver P.J., Geometric foundations of numerical algorithms and symmetry,
  Appl. Algebra Engrg. Comm. Comput. 11 (2001), 417-436.
 
- Olver P.J., Generating differential invariants, J. Math. Anal. Appl.
  333 (2007), 450-471.
 
- Ovsiannikov L.V., Group analysis of differential equations, Academic Press
  Inc., New York, 1982.
 
- Rebelo R., Valiquette F., Symmetry preserving numerical schemes for partial
  differential equations and their numerical tests, J. Difference Equ.
  Appl. 19 (2013), 738-757, arXiv:1110.5921.
 
- Sommer M., Névir P., A conservative scheme for the shallow-water system on
  a staggered geodesic grid based on a Nambu representation, Q. J. R.
  Meteorol. Soc. 135 (2009), 485-494.
 
- Staniforth A., Côté J., Semi-Lagrangian integration schemes for
  atmospheric models - a review, Mon. Weather Rev. 119
  (1991), 2206-2223.
 
- Stensrud D.J., Parameterization schemes: keys to understanding numerical
  weather prediction models, Cambridge University Press, Cambridge, 2007.
 
- Stull R.B., An introduction to boundary layer meteorology, Atmospheric
  Sciences Library, Vol. 13, Kluwer Academic Publishers, Dortrecht, 1988.
 
- Valiquette F., Winternitz P., Discretization of partial differential equations
  preserving their physical symmetries, J. Phys. A: Math. Gen.
  38 (2005), 9765-9783, math-ph/0507061.
 
 
 | 
 |