| 
 SIGMA 9 (2013), 054, 28 pages       arXiv:1208.4821     
https://doi.org/10.3842/SIGMA.2013.054 
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa 
Extended T-System of Type G2
Jian-Rong Li a and Evgeny Mukhin b
 a) Department of Mathematics, Lanzhou University, Lanzhou 730000, P.R. China
 b) Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA
 
 
Received April 03, 2013, in final form August 16, 2013; Published online August 22, 2013 
Abstract
 
We prove a family of 3-term relations in the Grothendieck ring of the category of
finite-dimensional modules over the affine quantum algebra of type G2 extending the celebrated
T-system relations of type G2.
We show that these relations can be used to compute classes of certain irreducible modules, including
classes of all minimal affinizations of type G2.
We use this result to obtain explicit formulas for dimensions of all participating modules.
  
 Key words:
quantum affine algebra of type G2; minimal affinizations; extended T-systems; q-characters; Frenkel-Mukhin algorithm. 
pdf (545 kb)  
tex (30 kb)
 
 
References
 
- Chari V., Pressley A., Quantum affine algebras, Comm. Math. Phys.
  142 (1991), 261-283.
 
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press,
  Cambridge, 1994.
 
- Chari V., Pressley A., Minimal affinizations of representations of quantum
  groups: the nonsimply-laced case, Lett. Math. Phys. 35
  (1995), 99-114, hep-th/9410036.
 
- Chari V., Pressley A., Quantum affine algebras and their representations, in
  Representations of Groups (Banff, AB, 1994), CMS Conf. Proc.,
  Vol. 16, Amer. Math. Soc., Providence, RI, 1995, 59-78,
  hep-th/9411145.
 
- Chari V., Pressley A., Factorization of representations of quantum affine
  algebras, in Modular Interfaces (Riverside, CA, 1995), AMS/IP
  Stud. Adv. Math., Vol. 4, Amer. Math. Soc., Providence, RI, 1997, 33-40.
 
- Cherednik I.V., A new interpretation of Gel'fand-Tzetlin bases,
  Duke Math. J. 54 (1987), 563-577.
 
- Drinfel'd V.G., A new realization of Yangians and of quantum affine algebras,
  Soviet Math. Dokl. 36 (1988), 212-216.
 
- Frenkel E., Mukhin E., Combinatorics of q-characters of finite-dimensional
  representations of quantum affine algebras, Comm. Math. Phys.
  216 (2001), 23-57, math.QA/9911112.
 
- Frenkel E., Reshetikhin N., The q-characters of representations of quantum
  affine algebras and deformations of W-algebras, in Recent
  Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC,
  1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI,
  1999, 163-205, math.QA/9810055.
 
- Hernandez D., The Kirillov-Reshetikhin conjecture and solutions of
  T-systems, J. Reine Angew. Math. 596 (2006), 63-87,
  math.QA/0501202.
 
- Hernandez D., On minimal affinizations of representations of quantum groups,
  Comm. Math. Phys. 276 (2007), 221-259,
  math.QA/0607527.
 
- Hernandez D., Leclerc B., Cluster algebras and quantum affine algebras,
  Duke Math. J. 154 (2010), 265-341, arXiv:0903.1452.
 
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of
  T-systems and Y-systems, dilogarithm identities, and cluster
  algebras I: type Br, Publ. Res. Inst. Math. Sci. 49
  (2013), 1-42, arXiv:1001.1880.
 
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of
  T-systems and Y-systems, dilogarithm identities, and cluster
  algebras II: types Cr, F4, and G2, Publ. Res. Inst.
  Math. Sci. 49 (2013), 43-85, arXiv:1001.1881.
 
- Kirillov A.N., Reshetikhin N.Yu., Representations of Yangians and
  multiplicities of the inclusion of the irreducible components of the tensor
  product of representations of simple Lie algebras, J. Soviet Math.
  52 (1990), 3156-3164.
 
- Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice
  models. I. Functional relations and representation theory,
  Internat. J. Modern Phys. A 9 (1994), 5215-5266,
  hep-th/9309137.
 
- Kuniba A., Nakanishi T., Suzuki J., T-systems and Y-systems in
  integrable systems, J. Phys. A: Math. Theor. 44 (2011),
  103001, 146 pages, arXiv:1010.1344.
 
- Mukhin E., Young C.A.S., Extended T-systems, Selecta Math. (N.S.)
  18 (2012), 591-631, arXiv:1104.3094.
 
- Mukhin E., Young C.A.S., Path description of type B q-characters,
  Adv. Math. 231 (2012), 1119-1150, arXiv:1103.5873.
 
- Nakajima H., t-analogs of q-characters of Kirillov-Reshetikhin
  modules of quantum affine algebras, Represent. Theory 7
  (2003), 259-274, math.QA/0204185.
 
- Nakajima H., Quiver varieties and t-analogs of q-characters of quantum
  affine algebras, Ann. of Math. (2) 160 (2004), 1057-1097,
  math.QA/0105173.
 
- Nazarov M., Tarasov V., Representations of Yangians with Gelfand-Zetlin
  bases, J. Reine Angew. Math. 496 (1998), 181-212,
  q-alg/9502008.
 
 
 | 
 |