| 
 SIGMA 9 (2013), 055, 17 pages      arXiv:1302.3727     
https://doi.org/10.3842/SIGMA.2013.055 
$\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$
Najla Mellouli a,  Aboubacar Nibirantiza b and Fabian Radoux b
 a) University of Sfax, Higher Institute of Biotechnology, Route de la Soukra km 4, B.P.
no 1175, 3038 Sfax, Tunisia
 b) University of Liège, Institute of Mathematics, Grande Traverse, 12 - B37, B-4000 Liège, Belgium
 
 
Received February 18, 2013, in final form August 15, 2013; Published online August 23, 2013 
Abstract
 
We consider the space of differential operators $\mathcal{D}_{\lambda\mu}$ acting between
$\lambda$- and $\mu$-densities defined on $S^{1|2}$ endowed with its standard contact structure.
This contact structure allows one to define a filtration on $\mathcal{D}_{\lambda\mu}$ which is finer
than the classical one, obtained by writting a differential operator in terms of the partial derivatives
with respect to the different coordinates.
The space $\mathcal{D}_{\lambda\mu}$ and the associated graded space of symbols $\mathcal{S}_{\delta}$
($\delta=\mu-\lambda$) can be considered as $\mathfrak{spo}(2|2)$-modules, where $\mathfrak{spo}(2|2)$ is
the Lie superalgebra of contact projective vector fields on $S^{1|2}$.
We show in this paper that there is a unique isomorphism of $\mathfrak{spo}(2|2)$-modules between
$\mathcal{S}_{\delta}$ and $\mathcal{D}_{\lambda\mu}$ that preserves the principal symbol (i.e.
an $\mathfrak{spo}(2|2)$-equivariant quantization) for some values of $\delta$ called non-critical values.
Moreover, we give an explicit formula for this isomorphism, extending in this way the results
of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators.
The method used here to build the $\mathfrak{spo}(2|2)$-equivariant quantization is the same as the one
used in [Mathonet P., Radoux F., Lett. Math. Phys. 98
  (2011), 311-331] to prove the existence of a $\mathfrak{pgl}(p+1|q)$-equivariant quantization on
$\mathbb{R}^{p|q}$.
  
 Key words:
equivariant quantization; supergeometry; contact geometry; orthosymplectic Lie superalgebra. 
pdf (474 kb)  
tex (21 kb)
 
 
References
 
- Berezin F.A., Introduction to superanalysis, Mathematical Physics and
  Applied Mathematics, Vol. 9, D. Reidel Publishing Co., Dordrecht, 1987.
 
- Boniver F., Hansoul S., Mathonet P., Poncin N., Equivariant symbol calculus for
  differential operators acting on forms, Lett. Math. Phys.
  62 (2002), 219-232, math.RT/0206213.
 
- Boniver F., Mathonet P., IFFT-equivariant quantizations, J. Geom.
  Phys. 56 (2006), 712-730, math.RT/0109032.
 
- Bouarroudj S., Projectively equivariant quantization map, Lett. Math.
  Phys. 51 (2000), 265-274, math.DG/0003054.
 
- Cap A., Silhan J., Equivariant quantizations for AHS-structures,
  Adv. Math. 224 (2010), 1717-1734, arXiv:0904.3278.
 
- Duval C., Lecomte P., Ovsienko V., Conformally equivariant quantization:
  existence and uniqueness, Ann. Inst. Fourier (Grenoble) 49
  (1999), 1999-2029, math.DG/9902032.
 
- Fox D.J.F., Projectively invariant star products, Int. Math. Res. Pap.
   (2005), 461-510, math.DG/0504596.
 
- Gargoubi H., Mellouli N., Ovsienko V., Differential operators on supercircle:
  conformally equivariant quantization and symbol calculus, Lett. Math.
  Phys. 79 (2007), 51-65, math-ph/0610059.
 
- Hansoul S., Projectively equivariant quantization for differential operators
  acting on forms, Lett. Math. Phys. 70 (2004), 141-153.
 
- Hansoul S., Existence of natural and projectively equivariant quantizations,
  Adv. Math. 214 (2007), 832-864, math.DG/0601518.
 
- Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
 
- Lecomte P.B.A., Classification projective des espaces d'opérateurs
  différentiels agissant sur les densités, C. R. Acad. Sci. Paris
  Sér. I Math. 328 (1999), 287-290.
 
- Lecomte P.B.A., Towards projectively equivariant quantization, Progr.
  Theoret. Phys. Suppl.  (2001), no. 144, 125-132.
 
- Lecomte P.B.A., Ovsienko V.Yu., Projectively equivariant symbol calculus,
  Lett. Math. Phys. 49 (1999), 173-196,
  math.DG/9809061.
 
- Leites D., Poletaeva E., Serganova V., On Einstein equations on manifolds and
  supermanifolds, J. Nonlinear Math. Phys. 9 (2002),
  394-425, math.DG/0306209.
 
- Leuther T., Mathonet P., Radoux F., One
${\mathfrak{osp}}(p+1,q+1|2r)$-equivariant quantizations, J. Geom.
  Phys. 62 (2012), 87-99, arXiv:1107.1387.
 
- Leuther T., Radoux F., Natural and projectively invariant quantizations on
  supermanifolds, SIGMA 7 (2011), 034, 12 pages,
  arXiv:1010.0516.
 
- Mathonet P., Radoux F., Natural and projectively equivariant quantizations by
  means of Cartan connections, Lett. Math. Phys. 72 (2005),
  183-196, math.DG/0606554.
 
- Mathonet P., Radoux F., Cartan connections and natural and projectively
  equivariant quantizations, J. Lond. Math. Soc. (2) 76
  (2007), 87-104, math.DG/0606556.
 
- Mathonet P., Radoux F., On natural and conformally equivariant quantizations,
  J. Lond. Math. Soc. (2) 80 (2009), 256-272,
  arXiv:0707.1412.
 
- Mathonet P., Radoux F., Existence of natural and conformally invariant
  quantizations of arbitrary symbols, J. Nonlinear Math. Phys.
  17 (2010), 539-556, arXiv:0811.3710.
 
- Mathonet P., Radoux F., Projectively equivariant quantizations over the
  superspace ${\mathbb R}^{p|q}$, Lett. Math. Phys. 98
  (2011), 311-331, arXiv:1003.3320.
 
- Mellouli N., Second-order conformally equivariant quantization in dimension
  $1|2$, SIGMA 5 (2009), 111, 11 pages, arXiv:0912.5190.
 
- Michel J.-P., Quantification conformément équivariante des fibrés
  supercotangents, Ph.D. thesis, Université de la Méditerranée -
  Aix-Marseille II, 2009, available at
  http://tel.archives-ouvertes.fr/tel-00425576.
 
- Musson I.M., On the center of the enveloping algebra of a classical simple
  Lie superalgebra, J. Algebra 193 (1997), 75-101.
 
- Pinczon G., The enveloping algebra of the Lie superalgebra  ${\rm osp}(1,2)$, J. Algebra 132 (1990), 219-242.
 
- Sergeev A., The invariant polynomials on simple Lie superalgebras,
  Represent. Theory 3 (1999), 250-280,
  math.RT/9810111.
 
 
 | 
 |