| 
 SIGMA 9 (2013), 056, 8 pages      arXiv:1209.1715     
https://doi.org/10.3842/SIGMA.2013.056 
Integrability of Discrete Equations Modulo a Prime
Masataka Kanki
 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan
 
 
Received April 24, 2013, in final form September 05, 2013; Published online September 08, 2013 
Abstract
 
We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous
works, to several classes of discrete integrable equations.
We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite
fields as the notion of the singularity confinement does.
We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR.
We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR.
  
 Key words:
integrability test; good reduction; discrete Painlevé equation; finite field. 
pdf (316 kb)  
tex (14 kb)
 
 
References
 
- Bellon M.P., Viallet C.M., Algebraic entropy, Comm. Math. Phys.
  204 (1999), 425-437, chao-dyn/9805006.
 
- Bialecki M., Doliwa A., The discrete KP and KdV equations over finite
  fields, Theoret. and Math. Phys. 137 (2003), 1412-1418,
  nlin.SI/0302064.
 
- Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the
  Painlevé property?, Phys. Rev. Lett. 67 (1991),
  1825-1828.
 
- Halburd R.G., Diophantine integrability, J. Phys. A: Math. Gen.
  38 (2005), L263-L269, nlin.SI/0504027.
 
- Hietarinta J., Viallet C., Singularity confinement and chaos in discrete
  systems, Phys. Rev. Lett. 81 (1998), 325-328,
  solv-int/9711014.
 
- Kajiwara K., Noumi M., Yamada Y., Discrete dynamical systems with
W(Am−1(1)×An−1(1)) symmetry, Lett. Math. Phys.
  60 (2002), 211-219, nlin.SI/0106029.
 
- Kanki M., Mada J., Tamizhmani K.M., Tokihiro T., Discrete Painlevé II
  equation over finite fields, J. Phys. A: Math. Theor. 45
  (2012), 342001, 8 pages, arXiv:1206.4456.
 
- Kanki M., Mada J., Tokihiro T., The space of initial conditions and the
  property of an almost good reduction in discrete Painlevé II equations
  over finite fields, arXiv:1209.0223.
 
- Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton
  equations, Phys. Lett. A 126 (1988), 419-421.
 
- Ramani A., Grammaticos B., Discrete Painlevé equations: coalescences,
  limits and degeneracies, Phys. A 228 (1996), 160-171,
  solv-int/9510011.
 
- Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé
  equations, Phys. Rev. Lett. 67 (1991), 1829-1832.
 
- Roberts J.A.G., Order and symmetry in birational difference equations and their
  signatures over finite phase spaces, in Proceedings of the Workshop
  Future Directions in Difference Equations, Colecc. Congr.,
  Vol. 69, Univ. Vigo, Serv. Publ., Vigo, 2011, 213-221.
 
- Roberts J.A.G., Vivaldi F., Signature of time-reversal symmetry in polynomial
  automorphisms over finite fields, Nonlinearity 18 (2005),
  2171-2192.
 
- Sakai H., Rational surfaces associated with affine root systems and geometry of
  the Painlevé equations, Comm. Math. Phys. 220 (2001),
  165-229.
 
- Silverman J.H., The arithmetic of dynamical systems, Graduate Texts in
  Mathematics, Vol. 241, Springer, New York, 2007.
 
- Takahashi Y., Irregular solutions of the periodic discrete Toda equation,
  Master's thesis, The University of Tokyo, 2011 (in Japanese).
 
- Takenawa T., Algebraic entropy and the space of initial values for discrete
  dynamical systems, J. Phys. A: Math. Gen. 34 (2001),
  10533-10545, nlin.SI/0103011.
 
- Wolfram S., Statistical mechanics of cellular automata, Rev. Modern
  Phys. 55 (1983), 601-644.
 
 
 | 
 |