| 
 SIGMA 9 (2013), 064, 14 pages      arXiv:1304.5866     
https://doi.org/10.3842/SIGMA.2013.064 
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System
Fethi Bouzeffour
 Department of Mathematics, King Saudi University, College of Sciences, P.O. Box 2455 Riyadh 11451, Saudi Arabia
 
 
Received April 24, 2013, in final form October 16, 2013; Published online October 23, 2013;
Misprints are corrected November 04, 2013 
Abstract
 
In this paper, we introduce a new differential-difference operator $T_\xi$ $(\xi \in
\mathbb{R}^N)$ by using projections associated to orthogonal subsystems in root systems.
Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator
between $T_\xi$ and the directional derivative $\partial_\xi$. In the case of one variable, we prove that the Kummer functions are eigenfunctions of this operator.
  
 Key words:
special functions; differential-difference operators; integral transforms. 
pdf (362 kb)  
tex (15 kb)
      [previous version: 
pdf (362 kb)  
tex (15 kb)]
 
 
References
 
- Bouzeffour F., Special functions associated with complex reflection groups,
  Ramanujan J., to appear.
 
- Cherednik I., Double affine Hecke algebras, Knizhnik-Zamolodchikov
  equations, and Macdonald's operators, Int. Math. Res. Not.
   (1992), 171-180.
 
- Dunkl C.F., Reflection groups and orthogonal polynomials on the sphere,
  Math. Z. 197 (1988), 33-60.
 
- Dunkl C.F., Differential-difference operators associated to reflection groups,
  Trans. Amer. Math. Soc. 311 (1989), 167-183.
 
- Dunkl C.F., Opdam E.M., Dunkl operators for complex reflection groups,
  Proc. London Math. Soc. 86 (2003), 70-108,
  math.RT/0108185.
 
- Dunkl C.F., Xu Y., Orthogonal polynomials of several variables,
  Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge
  University Press, Cambridge, 2001.
 
- Heckman G.J., An elementary approach to the hypergeometric shift operators of
  Opdam, Invent. Math. 103 (1991), 341-350.
 
- Heckman G.J., Dunkl operators, Astérisque 245 (1997), Exp.   No. 828, 4, 223-246.
 
- Humphreys J.E., Reflection groups and Coxeter groups, Cambridge
  Studies in Advanced Mathematics, Vol. 29, Cambridge University Press,
  Cambridge, 1990.
 
- Kober H., On fractional integrals and derivatives, Quart. J. Math.,
  Oxford Ser. 11 (1940), 193-211.
 
- Koornwinder T.H., Bouzeffour F., Nonsymmetric Askey-Wilson polynomials as
  vector-valued polynomials, Appl. Anal. 90 (2011), 731-746, arXiv:1006.1140.
 
- Luchko Y., Trujillo J.J., Caputo-type modification of the Erdélyi-Kober
  fractional derivative, Fract. Calc. Appl. Anal. 10 (2007),
  249-267.
 
- Macdonald I.G., Affine Hecke algebras and orthogonal polynomials,
  Cambridge Tracts in Mathematics, Vol. 157, Cambridge University
  Press, Cambridge, 2003.
 
- Opdam E.M., Dunkl operators, Bessel functions and the discriminant of a
  finite Coxeter group, Compositio Math. 85 (1993),
  333-373.
 
- Temme N.M., Special functions. An introduction to the classical functions of
  mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons
  Inc., New York, 1996.
 
 
 | 
 |