| 
 SIGMA 9 (2013), 065, 18 pages      arXiv:1304.7191     
https://doi.org/10.3842/SIGMA.2013.065 
Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1)
Nelson Faustino
 Departamento de Matemática Aplicada, IMECC-Unicamp, CEP 13083-859, Campinas, SP, Brasil
 
 
Received May 06, 2013, in final form October 28, 2013; Published online November 05, 2013 
Abstract
 
Based on the representation of a set of canonical operators on the lattice $h\mathbb{Z}^n$, which
are Clifford-vector-valued, we will introduce new families of special functions of hypercomplex variable
possessing $\mathfrak{su}(1,1)$ symmetries.
The Fourier decomposition of the space of Clifford-vector-valued polynomials with respect to the ${\rm
SO}(n)\times \mathfrak{su}(1,1)$-module gives rise to the construction of new families of polynomial
sequences as eigenfunctions of a coupled system involving forward/backward discretizations $E_h^{\pm}$ of
the Euler operator $E=\sum\limits_{j=1}^nx_j \partial_{x_j}$.
Moreover, the interpretation of the one-parameter representation $\mathbb{E}_h(t)=\exp(tE_h^--tE_h^+)$ of
the Lie group ${\rm SU}(1,1)$ as a semigroup $\left(\mathbb{E}_h(t)\right)_{t\geq 0}$ will allows us to
describe the polynomial solutions of an homogeneous Cauchy problem on $[0,\infty)\times h{\mathbb Z}^n$
involving the differencial-difference operator $\partial_t+E_h^+-E_h^-$.
  
 Key words:
Clifford algebras; finite difference operators; Lie algebras. 
pdf (427 kb)  
tex (22 kb)
 
 
References
 
- Cartier P., Mathemagics (a tribute to L. Euler and R. Feynman), in
  Noise, Oscillators and Algebraic Randomness (Chapelle des Bois, 1999),
  Lecture Notes in Phys., Vol. 550, Springer, Berlin, 2000, 6-67.
 
- De Ridder H., De Schepper H., Kähler U., Sommen F., Discrete function
  theory based on skew Weyl relations, Proc. Amer. Math. Soc.
  138 (2010), 3241-3256.
 
- De Ridder H., De Schepper H., Sommen F., Fueter polynomials in discrete
  Clifford analysis, Math. Z. 272 (2012), 253-268.
 
- Delanghe R., Sommen F., Soucek V., Clifford algebra and spinor-valued
  functions. A function theory for the Dirac operator, Mathematics and
  its Applications, Vol. 53, Kluwer Academic Publishers Group, Dordrecht,
  1992.
 
- Di Bucchianico A., Loeb D.E., Rota G.C., Umbral calculus in Hilbert space, in
  Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA,
  1996), Progr. Math., Vol. 161, Birkhäuser Boston, Boston, MA,
  1998, 213-238.
 
- Dimakis A., Müller-Hoissen F., Striker T., Umbral calculus, discretization,
  and quantum mechanics on a lattice, J. Phys. A: Math. Gen.
  29 (1996), 6861-6876, quant-ph/9509014.
 
- Eelbode D., Monogenic Appell sets as representations of the Heisenberg
  algebra, Adv. Appl. Clifford Algebr. 22 (2012), 1009-1023.
 
- Faustino N., Kähler U., Fischer decomposition for difference Dirac
  operators, Adv. Appl. Clifford Algebr. 17 (2007), 37-58,
  math.CV/0609823.
 
- Faustino N., Ren G., (Discrete) Almansi type decompositions: an umbral
  calculus framework based on ${\mathfrak{osp}}(1|2)$ symmetries,
  Math. Methods Appl. Sci. 34 (2011), 1961-1979,
  arXiv:1102.5434.
 
- Goodman R., Wallach N.R., Representations and invariants of the classical
  groups, Encyclopedia of Mathematics and its Applications, Vol. 68,
  Cambridge University Press, Cambridge, 1998.
 
- Howe R., Remarks on classical invariant theory, Trans. Amer. Math.
  Soc. 313 (1989), 539-570.
 
- Levi D., Tempesta P., Winternitz P., Umbral calculus, difference equations and
  the discrete Schrödinger equation, J. Math. Phys. 45
  (2004), 4077-4105, nlin.SI/0305047.
 
- Malonek H.R., Tomaz G., Bernoulli polynomials and Pascal matrices in the
  context of Clifford analysis, Discrete Appl. Math. 157
  (2009), 838-847.
 
- Odake S., Sasaki R., Discrete quantum mechanics, J. Phys. A: Math.
  Theor. 44 (2011), 353001, 47 pages, arXiv:1104.0473.
 
- Sommen F., An algebra of abstract vector variables, Portugal. Math.
  54 (1997), 287-310.
 
- Tempesta P., On Appell sequences of polynomials of Bernoulli and Euler
  type, J. Math. Anal. Appl. 341 (2008), 1295-1310.
 
- Vilenkin N.J., Klimyk A.U., Representation of Lie groups and special
  functions. Vol. 1. Simplest Lie groups, special functions and integral
  transforms, Mathematics and its Applications (Soviet Series),
  Vol. 72, Kluwer Academic Publishers Group, Dordrecht, 1991.
 
 
 | 
 |