| 
 SIGMA 9 (2013), 073, 12 pages      arXiv:1309.4949     
https://doi.org/10.3842/SIGMA.2013.073 
Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
Kazuki Maeda and Satoshi Tsujimoto
 Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
 
 
Received September 20, 2013, in final form November 22, 2013; Published online November 26, 2013 
Abstract
 
The spectral transformation technique for symmetric RII polynomials is developed.
Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly
connected with the RII chain.
Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.
  
 Key words:
orthogonal polynomials; spectral transformation; RII chain; nonautonomous discrete modified KdV lattice. 
pdf (366 kb)  
tex (69 kb)
 
 
References
 
- Adler M., Horozov E., van Moerbeke P., The Pfaff lattice and skew-orthogonal
  polynomials, Int. Math. Res. Not. 1999 (1999), no. 11,
  569-588, solv-int/9903005.
 
- Adler M., van Moerbeke P., String-orthogonal polynomials, string equations, and
  2-Toda symmetries, Comm. Pure Appl. Math. 50 (1997),
  241-290, hep-th/9706182.
 
- Adler M., van Moerbeke P., Toda versus Pfaff lattice and related polynomials,
  Duke Math. J. 112 (2002), 1-58.
 
- Chihara T.S., An introduction to orthogonal polynomials, Mathematics
  and its Applications, Vol. 13, Gordon and Breach Science Publishers, New
  York, 1978.
 
- Fernando K.V., Parlett B.N., Accurate singular values and differential qd
  algorithms, Numer. Math. 67 (1994), 191-229.
 
- Grammaticos B., Ramani A., Satsuma J., Willox R., Carstea A.S., Reductions of
  integrable lattices, J. Nonlinear Math. Phys. 12 (2005),
  suppl. 1, 363-371.
 
- Hay M., Hietarinta J., Joshi N., Nijhoff F., A Lax pair for a lattice
  modified KdV equation, reductions to q-Painlevé equations and
  associated Lax pairs, J. Phys. A: Math. Theor. 40 (2007),
  F61-F73.
 
- Ismail M.E.H., Masson D.R., Generalized orthogonality and continued fractions,
  J. Approx. Theory 83 (1995), 1-40,
  math.CA/9407213.
 
- Iwasaki M., Nakamura Y., An application of the discrete Lotka-Volterra
  system with variable step-size to singular value computation, Inverse
  Problems 20 (2004), 553-563.
 
- Iwasaki M., Nakamura Y., Accurate computation of singular values in terms of
  shifted integrable schemes, Japan J. Indust. Appl. Math. 23
  (2006), 239-259.
 
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., 10E9 solution to
  the elliptic Painlevé equation, J. Phys. A: Math. Gen.
  36 (2003), L263-L272, nlin.SI/0303032.
 
- Kharchev S., Mironov A., Zhedanov A., Faces of relativistic Toda chain,
  Internat. J. Modern Phys. A 12 (1997), 2675-2724,
  hep-th/9606144.
 
- Maeda K., Tsujimoto S., A generalized eigenvalue algorithm for tridiagonal
  matrix pencils based on a nonautonomous discrete integrable system,
  arXiv:1303.1035.
 
- Miki H., Goda H., Tsujimoto S., Discrete spectral transformations of skew
  orthogonal polynomials and associated discrete integrable systems,
  SIGMA 8 (2012), 008, 14 pages, arXiv:1111.7262.
 
- Miki H., Tsujimoto S., Cauchy biorthogonal polynomials and discrete integrable
  systems, J. Nonlinear Syst. Appl. 2 (2011), 195-199.
 
- Mukaihira A., Nakamura Y., Schur flow for orthogonal polynomials on the unit
  circle and its integrable discretization, J. Comput. Appl. Math.  139 (2002), 75-94.
 
- Mukaihira A., Tsujimoto S., Determinant structure of RI type discrete
  integrable system, J. Phys. A: Math. Gen. 37 (2004),
  4557-4565.
 
- Mukaihira A., Tsujimoto S., Determinant structure of non-autonomous Toda-type
  integrable systems, J. Phys. A: Math. Gen. 39 (2006),
  779-788.
 
- Noumi M., Tsujimoto S., Yamada Y., Padé interpolation for elliptic Painlevé
  equation, in Symmetries, Integrable Systems and Representations,
  Springer Proceedings in Mathematics & Statistics, Vol. 40, Editors
  K. Iohara, S. Morier-Genoud, B. Rémy, Springer-Verlag, Berlin, 2013,
  463-482, arXiv:1204.0294.
 
- Ormerod C.M., Reductions of lattice mKdV to q-PVI,
  Phys. Lett. A 376 (2012), 2855-2859, arXiv:1112.2419.
 
- Ormerod C.M., Symmetries and special solutions of reductions of the lattice
  potential KdV equation, arXiv:1308.4233.
 
- Ormerod C.M., van der Kamp P.H., Hietarinta J., Quispel G.R.W., Twisted
  reductions of integrable lattice equations, and their Lax representations,
  arXiv:1307.5208.
 
- Ormerod C.M., van der Kamp P.H., Quispel G.R.W., Discrete Painlevé
  equations and their Lax pairs as reductions of integrable lattice
  equations, J. Phys. A: Math. Theor. 46 (2013), 095204,
  22 pages, arXiv:1209.4721.
 
- Papageorgiou V., Grammaticos B., Ramani A., Orthogonal polynomial approach to
  discrete Lax pairs for initial-boundary value problems of the QD
  algorithm, Lett. Math. Phys. 34 (1995), 91-101.
 
- Sakai H., Rational surfaces associated with affine root systems and geometry of
  the Painlevé equations, Comm. Math. Phys. 220 (2001),
  165-229.
 
- Spiridonov V., Zhedanov A., Discrete Darboux transformations, the
  discrete-time Toda lattice, and the Askey-Wilson polynomials,
  Methods Appl. Anal. 2 (1995), 369-398.
 
- Spiridonov V., Zhedanov A., Discrete-time Volterra chain and classical
  orthogonal polynomials, J. Phys. A: Math. Gen. 30 (1997),
  8727-8737.
 
- Spiridonov V., Zhedanov A., Spectral transformation chains and some new
  biorthogonal rational functions, Comm. Math. Phys. 210
  (2000), 49-83.
 
- Spiridonov V.P., Solitons and Coulomb plasmas, similarity reductions and
  special functions, in Special Functions (Hong Kong, 1999), Editors
  C. Dunkl, M. Ismail, R. Wong, World Sci. Publ., River Edge, NJ, 2000,
  324-338.
 
- Spiridonov V.P., Tsujimoto S., Zhedanov A.S., Integrable discrete time chains
  for the Frobenius-Stickelberger-Thiele polynomials, Comm.
  Math. Phys. 272 (2007), 139-165.
 
- Spiridonov V.P., Zhedanov A.S., To the theory of biorthogonal rational
  functions, RIMS Kōkyōuroku 1302 (2003), 172-192.
 
- Takahashi D., Matsukidaira J., Box and ball system with a carrier and
  ultradiscrete modified KdV equation, J. Phys. A: Math. Gen.
  30 (1997), L733-L739.
 
- Tsujimoto S., On the discrete Toda lattice hierarchy and orthogonal
  polynomials, RIMS Kōkyōuroku 1280 (2002), 11-18.
 
- Tsujimoto S., Determinant solutions of the nonautonomous discrete Toda
  equation associated with the deautonomized discrete KP hierarchy,
  J. Syst. Sci. Complex. 23 (2010), 153-176.
 
- Tsujimoto S., Kondo K., Molecule solutions to discrete equations and orthogonal
  polynomials, RIMS Kōkyōuroku 1170 (2000), 1-8.
 
- Van Loan C.F., Generalizing the singular value decomposition, SIAM J.
  Numer. Anal. 13 (1976), 76-83.
 
- Vinet L., Zhedanov A., An integrable chain and bi-orthogonal polynomials,
  Lett. Math. Phys. 46 (1998), 233-245.
 
- Zhedanov A., Biorthogonal rational functions and the generalized eigenvalue
  problem, J. Approx. Theory 101 (1999), 303-329.
 
 
 | 
 |