| 
 SIGMA 9 (2013), 074, 19 pages      arXiv:1304.7838     
https://doi.org/10.3842/SIGMA.2013.074 
The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
Anthony D. Blaom
 22 Ridge Road, Waiheke Island, New Zealand
 
 
Received May 08, 2013, in final form November 19, 2013; Published online November 26, 2013 
Abstract
 
A linear connection on a Lie algebroid is called a
    Cartan connection if it is suitably compatible with the Lie
  algebroid structure.  Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts
  modeled on some homogeneous space G/H – if and only if there
  exists a transitive Lie algebroid over M admitting a flat Cartan
  connection that is 'geometrically closed'. It is shown how the
  torsion and monodromy of the connection determine the particular
  form of G/H.  Under an additional completeness hypothesis, local
  homogeneity becomes global homogeneity, up to cover.
  
 Key words:
locally homogeneous; Lie algebroid; Cartan connection; completeness. 
pdf (404 kb)  
tex (30 kb)
 
 
References
 
- Abadoğlu E., Ortaçgil E., Intrinsic characteristic classes of a
  local Lie group, Port. Math. 67 (2010), 453-483,
  arXiv:0912.0855.
 
- Alekseevsky D.V., Michor P.W., Differential geometry of g-manifolds, Differential Geom. Appl. 5 (1995), 371-403,
  math.DG/9309214.
 
- Blaom A.D., Geometric structures as deformed infinitesimal symmetries,
  Trans. Amer. Math. Soc. 358 (2006), 3651-3671,
  math.DG/0404313.
 
- Blaom A.D., Lie algebroids and Cartan's method of equivalence, Trans.
  Amer. Math. Soc. 364 (2012), 3071-3135, math.DG/0509071.
 
- Blaom A.D., A Lie theory of pseudogroups, in preparation.
 
- Bott R., Tu L.W., Differential forms in algebraic topology, Graduate
  Texts in Mathematics, Vol. 82, Springer-Verlag, New York, 1982.
 
- Crainic M., Fernandes R.L., Lectures on integrability of Lie brackets, in
  Lectures on Poisson Geometry, Geom. Topol. Monogr., Vol. 17, Geom.
  Topol. Publ., Coventry, 2011, 1-107, math.DG/0611259.
 
- Dazord P., Groupoïde d'holonomie et géométrie globale, C. R.
  Acad. Sci. Paris Sér. I Math. 324 (1997), 77-80.
 
- do Carmo M.P., Riemannian geometry, Mathematics: Theory & Applications,
  Birkhäuser Boston Inc., Boston, MA, 1992.
 
- Goldman W.M., Locally homogeneous geometric manifolds, in Proceedings of the
  International Congress of Mathematicians, Vol. II, Hindustan Book
  Agency, New Delhi, 2010, 717-744.
 
- Gunning R.C., Special coordinate coverings of Riemann surfaces, Math.
  Ann. 170 (1967), 67-86.
 
- Kamber F.W., Michor P.W., Completing Lie algebra actions to Lie group
  actions, Electron. Res. Announc. Amer. Math. Soc. 10
  (2004), 1-10, math.DG/0310308.
 
- Kowalski O., On strictly locally homogeneous Riemannian manifolds,
  Differential Geom. Appl. 7 (1997), 131-137.
 
- Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids,
  London Mathematical Society Lecture Note Series, Vol. 213, Cambridge
  University Press, Cambridge, 2005.
 
- Palais R.S., A global formulation of the Lie theory of transformation groups,
  Mem. Amer. Math. Soc. 22 (1957), iii+123 pages.
 
- Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen
  program, Graduate Texts in Mathematics, Vol. 166, Springer-Verlag,
  New York, 1997.
 
- Thurston W.P., Three-dimensional geometry and topology, Vol. 1,
  Princeton Mathematical Series, Vol. 35, Princeton University Press,
  Princeton, NJ, 1997.
 
 
 | 
 |