| 
 SIGMA 9 (2013), 077, 12 pages       arXiv:1312.1028     
https://doi.org/10.3842/SIGMA.2013.077 
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa 
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
Jan Felipe van Diejen and Erdal Emsiz
 Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
 
 
Received September 27, 2013, in final form November 26, 2013; Published online December 04, 2013 
Abstract
 
We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction.
The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with
hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were
recently studied in detail by Venkateswaran.
  
 Key words:
Hall-Littlewood functions; q-bosons; boundary fields; hyperoctahedral symmetry. 
pdf (351 kb)  
tex (16 kb)
 
 
References
 
- Bogoliubov N.M., Izergin A.G., Kitanine N.A., Correlation functions for a
  strongly correlated boson system, Nuclear Phys. B 516
  (1998), 501-528, solv-int/9710002.
 
- Borodin A., Corwin I., Petrov L., Sasamoto T., Spectral theory for the
  q-boson particle system, arXiv:1308.3475.
 
- van Diejen J.F., Properties of some families of hypergeometric orthogonal
  polynomials in several variables, Trans. Amer. Math. Soc.
  351 (1999), 233-270, q-alg/9604004.
 
- van Diejen J.F., Emsiz E., Diagonalization of the infinite q-boson system,
  arXiv:1308.2237.
 
- van Diejen J.F., Emsiz E., The semi-infinite q-boson system with boundary
  interaction, Lett. Math. Phys., to appear, arXiv:1308.2242.
 
- Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts
  and Monographs in Physics, Springer-Verlag, Berlin, 1997.
 
- Koornwinder T.H., Askey-Wilson polynomials for root systems of type BC,
  in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and
  Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer.
  Math. Soc., Providence, RI, 1992, 189-204.
 
- Korff C., Cylindric versions of specialised Macdonald functions and a
  deformed Verlinde algebra, Comm. Math. Phys. 318 (2013),
  173-246, arXiv:1110.6356.
 
- Macdonald I.G., Orthogonal polynomials associated with root systems,
  Sém. Lothar. Combin. 45 (2000), Art. B45a, 40 pages,
  math.QA/0011046.
 
- Macdonald I.G., Affine Hecke algebras and orthogonal polynomials,
  Cambridge Tracts in Mathematics, Vol. 157, Cambridge University
  Press, Cambridge, 2003.
 
- Majid S., Foundations of quantum group theory, Cambridge University Press,
  Cambridge, 1995.
 
- Povolotsky A.M., On integrability of zero-range chipping models with factorized
  steady state, J. Phys. A: Math. Theor. 46 (2013), 465205,
  25 pages, arXiv:1308.3250.
 
- Sasamoto T., Wadati M., Exact results for one-dimensional totally asymmetric
  diffusion models, J. Phys. A: Math. Gen. 31 (1998),
  6057-6071.
 
- Takeyama Y., A discrete analogue of periodic delta Bose gas and affine Hecke
  algebra, arXiv:1209.2758.
 
- Tsilevich N.V., The quantum inverse scattering problem method for the
  q-boson model and symmetric functions, Funct. Anal. Appl.
  40 (2006), 207-217, math-ph/0510073.
 
- Venkateswaran V., Symmetric and nonsymmetric Hall-Littlewood polynomials of
  type BC, arXiv:1209.2933.
 
 
 | 
 |