| 
 SIGMA 10 (2014), 001, 24 pages      arXiv:1301.0838     
https://doi.org/10.3842/SIGMA.2014.001 
On Classification of Finite-Dimensional Superbialgebras and Hopf Superalgebras
Said Aissaoui a and Abdenacer Makhlouf b
 a) Université A-Mira, Laboratoire de Mathématiques Appliquées, Targa Ouzemmour 06000 Béjaia, Algeria
 b) Université de Haute Alsace, Laboratoire de Mathématiques, Informatique et Applications, 
4, rue des Frères Lumière F-68093 Mulhouse, France
 
 
Received February 08, 2013, in final form December 23, 2013; Published online January 02, 2014 
Abstract
 
The purpose of this paper is to investigate finite-dimensional superbialgebras and Hopf
superalgebras.
We study connected superbialgebras and provide a classification of non-trivial superbialgebras and Hopf
superalgebras in dimension n with n≤4.
  
 Key words:
superalgebra; superbialgebra; Hopf superalgebra; classification. 
pdf (416 kb)  
tex (28 kb)
 
 
References
 
- Abe E., Hopf algebras, Cambridge Tracts in Mathematics, Vol. 74,
  Cambridge University Press, Cambridge, 1980.
 
- Andruskiewitsch N., About finite dimensional Hopf algebras, in Quantum
  Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000),
  Contemp. Math., Vol. 294, Amer. Math. Soc., Providence, RI, 2002,
  1-57.
 
- Andruskiewitsch N., Angiono I., Yamane H., On pointed Hopf superalgebras, in
  New developments in Lie theory and its applications, Contemp.
  Math., Vol. 544, Amer. Math. Soc., Providence, RI, 2011, 123-140,
  arXiv:1009.5148.
 
- Andruskiewitsch N., Etingof P., Gelaki S., Triangular Hopf algebras with the
  Chevalley property, Michigan Math. J. 49 (2001),
  277-298, math.QA/0008232.
 
- Andruskiewitsch N., Schneider H.J., On the classification of finite-dimensional
  pointed Hopf algebras, Ann. of Math. 171 (2010),
  375-417, math.QA/0502157.
 
- Armour A., The algebraic and geometric classification of four dimensional
  super-algebras, Master Thesis, Victoria University of Wellington, 2006.
 
- Armour A., Chen H.X., Zhang Y., Classification of 4-dimensional graded
  algebras, Comm. Algebra 37 (2009), 3697-3728.
 
- Beattie M., Dăscălescu S., Hopf algebras of dimension 14,
  J. London Math. Soc. 69 (2004), 65-78,
  math.QA/0205243.
 
- Beattie M., Dăscălescu S., Grünenfelder L., On the number of
  types of finite-dimensional Hopf algebras, Invent. Math.
  136 (1999), 1-7.
 
- Beattie M., García G.A., Classifying Hopf algebras of a given
  dimension, in Hopf Algebras and Tensor Categories, Contemp. Math.,
  Vol. 585, Amer. Math. Soc., Providence, RI, 2013, 125-152,
  arXiv:1206.6529.
 
- Cheng Y.L., Ng S.H., On Hopf algebras of dimension 4p,
  J. Algebra 328 (2011), 399-419.
 
- Connes A., Kreimer D., Hopf algebras, renormalization and noncommutative
  geometry, Comm. Math. Phys. 199 (1998), 203-242,
  hep-th/9808042.
 
- Deguchi T., Fujii A., Ito K., Quantum superalgebra Uqosp(2,2),
  Phys. Lett. B 238 (1990), 242-246.
 
- Dekkar K., Makhlouf A., Bialgebra structures of 2-associative algebras,
  Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2008),
  137-151.
 
- Etingof P., Gelaki S., The classification of finite-dimensional triangular
  Hopf algebras over an algebraically closed field of characteristic 0,
  Mosc. Math. J. 3 (2003), 37-43.
 
- Fukuda N., Semisimple Hopf algebras of dimension 12, Tsukuba J.
  Math. 21 (1997), 43-54.
 
- Gabriel P., Finite representation type is open, in Proceedings of the
  International Conference on Representations of Algebras (Carleton
  Univ., Ottawa, Ont., 1974), Lecture Notes in Math., Vol. 488,
  Springer, Berlin, 1975, 132-155.
 
- Gould M.D., Zhang R.B., Bracken A.J., Quantum double construction for graded
  Hopf algebras, Bull. Austral. Math. Soc. 47 (1993),
  353-375.
 
- Guichardet A., Groupes quantiques. Introduction au point de vue formel, Savoirs
  Actuels, InterEditions, Paris, 1995.
 
- Holtkamp R., Comparison of Hopf algebras on trees, Arch. Math.
  (Basel) 80 (2003), 368-383.
 
- Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155,
  Springer-Verlag, New York, 1995.
 
- Kreimer D., On the Hopf algebra structure of perturbative quantum field
  theories, Adv. Theor. Math. Phys. 2 (1998), 303-334,
  q-alg/9707029.
 
- Kulish P.P., Reshetikhin N.Y., Universal R-matrix of the quantum
  superalgebra osp(2|1), Lett. Math. Phys. 18
  (1989), 143-149.
 
- Majid S., Cross products by braided groups and bosonization,
  J. Algebra 163 (1994), 165-190.
 
- Majid S., Foundations of quantum group theory, Cambridge University Press,
  Cambridge, 1995.
 
- Makhlouf A., Degeneration, rigidity and irreducible components of Hopf
  algebras, Algebra Colloq. 12 (2005), 241-254,
  math.RA/0211187.
 
- Makhlouf A., Algèbre de Hopf et renormalisation en théorie quantique
  des champs, in Théorie Quantique des Champs: Méthodes et
  Applications, Editors T. Boudjedaa, A. Makhlouf, Travaux en Cours, Hermann,
  Paris, 2007, 191-242.
 
- Masuoka A., Semisimple Hopf algebras of dimension 6, 8, Israel J.
  Math. 92 (1995), 361-373.
 
- Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of
  Math. 81 (1965), 211-264.
 
- Montgomery S., Hopf algebras and their actions on rings, CBMS Regional
  Conference Series in Mathematics, Vol. 82, Conference Board of the
  Mathematical Sciences, Washington, DC, 1993.
 
- Montgomery S., Classifying finite-dimensional semisimple Hopf algebras, in
  Trends in the Representation Theory of Finite-Dimensional Algebras
  (Seattle, WA, 1997), Contemp. Math., Vol. 229, Amer. Math. Soc.,
  Providence, RI, 1998, 265-279.
 
- Natale S., Hopf algebras of dimension 12, Algebr. Represent. Theory
  5 (2002), 445-455.
 
- Ng S.H., Non-semisimple Hopf algebras of dimension p2,
  J. Algebra 255 (2002), 182-197, math.QA/0110223.
 
- Scheunert M., Zhang R.B., Integration on Lie supergroups: a Hopf
  superalgebra approach, J. Algebra 292 (2005), 324-342,
  math.RA/0012052.
 
- Shnider S., Sternberg S., Quantum groups. From coalgebras to Drinfel'd
  algebras. A guided tour, Graduate Texts in Mathematical Physics,
  Vol. 2, International Press, Cambridge, MA, 1993.
 
- Ştefan D., The set of types of n-dimensional semisimple and
  cosemisimple Hopf algebras is finite, J. Algebra 193
  (1997), 571-580.
 
- Ştefan D., Hopf algebras of low dimension, J. Algebra
  211 (1999), 343-361.
 
- Williams R.E., Finite dimensional Hopf algebras, Ph.D. Thesis, The Florida
  State University, 1988.
 
- Zhu Y., Hopf algebras of prime dimension, Int. Math. Res. Not.
1994  (1994), 53-59.
 
 
 | 
 |