| 
 SIGMA 10 (2014), 002, 19 pages       arXiv:1308.4233     
https://doi.org/10.3842/SIGMA.2014.002 
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa 
Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
Christopher M. Ormerod
 Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
 
 
Received September 19, 2013, in final form December 28, 2013; Published online January 03, 2014 
Abstract
 
We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with $E_6^{(1)}$ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.
  
 Key words:
difference equations; integrability; reduction; isomonodromy. 
pdf (451 kb)  
tex (60 kb)
 
 
References
 
- Ablowitz M.J., Segur H., Exact linearization of a Painlevé transcendent,
  Phys. Rev. Lett. 38 (1977), 1103-1106.
 
- Arinkin D., Borodin A., Moduli spaces of $d$-connections and difference
  Painlevé equations, Duke Math. J. 134 (2006), 515-556,
  math.AG/0411584.
 
- Birkhoff G.D., General theory of linear difference equations, Trans.
  Amer. Math. Soc. 12 (1911), 243-284.
 
- Boll R., Classification of 3D consistent quad-equations, J. Nonlinear
  Math. Phys. 18 (2011), 337-365, arXiv:1009.4007.
 
- Borodin A., Isomonodromy transformations of linear systems of difference
  equations, Ann. of Math. 160 (2004), 1141-1182,
  math.CA/0209144.
 
- Clarkson P.A., Painlevé equations - nonlinear special functions, in
  Orthogonal Polynomials and Special Functions, Lecture Notes in
  Math., Vol. 1883, Springer, Berlin, 2006, 331-411.
 
- Clarkson P.A., Kruskal M.D., New similarity reductions of the Boussinesq
  equation, J. Math. Phys. 30 (1989), 2201-2213.
 
- Doliwa A., Non-commutative lattice-modified Gel'fand-Dikii systems,
  J. Phys. A: Math. Theor. 46 (2013), 205202, 14 pages,
arXiv:1302.5594.
 
- Dzhamay A., Sakai H., Takenawa T., Discrete Hamiltonian structure of
  Schlesinger transformations, arXiv:1302.2972.
 
- Flaschka H., Newell A.C., Monodromy- and spectrum-preserving deformations. I,
  Comm. Math. Phys. 76 (1980), 65-116.
 
- Hay M., Hierarchies of nonlinear integrable $q$-difference equations from
  series of Lax pairs, J. Phys. A: Math. Theor. 40 (2007),
  10457-10471.
 
- Hay M., Hietarinta J., Joshi N., Nijhoff F.W., A Lax pair for a lattice
  modified KdV equation, reductions to $q$-Painlevé equations and
  associated Lax pairs, J. Phys. A: Math. Theor. 40 (2007),
  F61-F73.
 
- Hay M., Howes P., Shi Y., A systematic approach to reductions of type-Q ABS
  equations, arXiv:1307.3390.
 
- Hay M., Kajiwara K., Masuda T., Bilinearization and special solutions to the
  discrete Schwarzian KdV equation, J. Math-for-Ind. 3A
  (2011), 53-62, arXiv:1102.1829.
 
- Hone A.N.W., van der Kamp P.H., Quispel G.R.W., Tran D.T., Integrability of
  reductions of the discrete Korteweg-de Vries and potential
  Korteweg-de Vries equations, Proc. R. Soc. Lond. Ser. A Math.
  Phys. Eng. Sci. 469 (2013), 20120747, 23 pages, arXiv:1211.6958.
 
- Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary
  differential equations with rational coefficients. II, Phys. D
  2 (1981), 407-448.
 
- Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation,
  Lett. Math. Phys. 38 (1996), 145-154,
  chao-dyn/9507010.
 
- Kajiwara K., The hypergeometric solutions of the additive Painlevé
  equations with $E$-type affine Weyl symmetry, Reports of RIAM Symposium
  No. 19ME-S2 (in Japanese).
 
- Kajiwara K., Kimura K., On a $q$-difference Painlevé III equation.
  I. Derivation, symmetry and Riccati type solutions,
  J. Nonlinear Math. Phys. 10 (2003), 86-102,
  nlin.SI/0205019.
 
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., ${}_{10}E_9$ solution
  to the elliptic Painlevé equation, J. Phys. A: Math. Gen.
  36 (2003), L263-L272, nlin.SI/0303032.
 
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Construction of
  hypergeometric solutions to the $q$-Painlevé equations, Int.
  Math. Res. Not. 2005 (2005), 1441-1463, nlin.SI/0501051.
 
- Kajiwara K., Noumi M., Yamada Y., A study on the fourth $q$-Painlevé
  equation, J. Phys. A: Math. Gen. 34 (2001), 8563-8581,
  nlin.SI/0012063.
 
- Kruskal M.D., Tamizhmani K.M., Grammaticos B., Ramani A., Asymmetric discrete
  Painlevé equations, Regul. Chaotic Dyn. 5 (2000),
  273-280.
 
- Murata M., New expressions for discrete Painlevé equations,
  Funkcial. Ekvac. 47 (2004), 291-305,
  nlin.SI/0304001.
 
- Murata M., Lax forms of the $q$-Painlevé equations, J. Phys. A:
  Math. Theor. 42 (2009), 115201, 17 pages, arXiv:0810.0058.
 
- Murata M., Sakai H., Yoneda J., Riccati solutions of discrete Painlevé
  equations with Weyl group symmetry of type $E^{(1)}_8$, J. Math.
  Phys. 44 (2003), 1396-1414, nlin.SI/0210040.
 
- Nijhoff F., Capel H., The discrete Korteweg-de Vries equation,
  Acta Appl. Math. 39 (1995), 133-158.
 
- Nijhoff F., Hone A., Joshi N., On a Schwarzian PDE associated with the
  KdV hierarchy, Phys. Lett. A 267 (2000), 147-156,
  solv-int/9909026.
 
- Nijhoff F., Joshi N., Hone A., On the discrete and continuous Miura chain
  associated with the sixth Painlevé equation, Phys. Lett. A
  264 (2000), 396-406, solv-int/9906006.
 
- Nijhoff F.W., Papageorgiou V.G., Similarity reductions of integrable lattices
  and discrete analogues of the Painlevé II equation, Phys.
  Lett. A 153 (1991), 337-344.
 
- Nijhoff F.W., Quispel G.R.W., Capel H.W., Direct linearization of nonlinear
  difference-difference equations, Phys. Lett. A 97 (1983),
  125-128.
 
- Nijhoff F.W., Ramani A., Grammaticos B., Ohta Y., On discrete Painlevé
  equations associated with the lattice KdV systems and the
  Painlevé VI equation, Stud. Appl. Math. 106 (2001),
  261-314, solv-int/9812011.
 
- Nijhoff F.W., Walker A.J., The discrete and continuous Painlevé VI
  hierarchy and the Garnier systems, Glasg. Math. J. 43A
  (2001), 109-123, nlin.SI/0001054.
 
- Noumi M., Special functions arising from discrete Painlevé equations: a
  survey, J. Comput. Appl. Math. 202 (2007), 48-55.
 
- Ormerod C.M., The lattice structure of connection preserving deformations for
  $q$-Painlevé equations I, SIGMA 7 (2011), 045,
  22 pages, arXiv:1010.3036.
 
- Ormerod C.M., A study of the associated linear problem for $q$-${\rm P}_{\rm V}$, J. Phys. A: Math. Theor. 44 (2011), 025201, 26 pages,
  arXiv:0911.5552.
 
- Ormerod C.M., Reductions of lattice mKdV to $q$-${\rm P}_{\rm VI}$,
  Phys. Lett. A 376 (2012), 2855-2859, arXiv:1112.2419.
 
- Ormerod C.M., van der Kamp P.H., Hietarinta J., Quispel G.R.W., Twisted
  reductions of integrable lattice equations, and their Lax representations,
  arXiv:1307.5208.
 
- Ormerod C.M., van der Kamp P.H., Quispel G.R.W., Discrete Painlevé
  equations and their Lax pairs as reductions of integrable lattice
  equations, J. Phys. A: Math. Theor. 46 (2013), 095204,
  22 pages, arXiv:1209.4721.
 
- Ormerod C.M., Witte N.S., Forrester P.J., Connection preserving deformations
  and $q$-semi-classical orthogonal polynomials, Nonlinearity
  24 (2011), 2405-2434, arXiv:0906.0640.
 
- Papageorgiou V.G., Nijhoff F.W., Capel H.W., Integrable mappings and nonlinear
  integrable lattice equations, Phys. Lett. A 147 (1990),
  106-114.
 
- Papageorgiou V.G., Nijhoff F.W., Grammaticos B., Ramani A., Isomonodromic
  deformation problems for discrete analogues of Painlevé equations,
  Phys. Lett. A 164 (1992), 57-64.
 
- Praagman C., Fundamental solutions for meromorphic linear difference equations
  in the complex plane, and related problems, J. Reine Angew. Math.
  369 (1986), 101-109.
 
- Rains E.M., An isomonodromy interpretation of the hypergeometric solution of
  the elliptic Painlevé equation (and generalizations), SIGMA
  7 (2011), 088, 24 pages, arXiv:0807.0258.
 
- Ramani A., Carstea A.S., Grammaticos B., On the non-autonomous form of the
  $Q_4$ mapping and its relation to elliptic Painlevé equations,
  J. Phys. A: Math. Theor. 42 (2009), 322003, 8 pages.
 
- Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function
  solutions of the discrete Painlevé equations, Comput. Math.
  Appl. 42 (2001), 603-614.
 
- Sakai H., Rational surfaces associated with affine root systems and geometry of
  the Painlevé equations, Comm. Math. Phys. 220 (2001),
  165-229.
 
- Sakai H., Hypergeometric solution of $q$-Schlesinger system of rank two,
  Lett. Math. Phys. 73 (2005), 237-247.
 
- Sakai H., Lax form of the $q$-Painlevé equation associated with the
  $A^{(1)}_2$ surface, J. Phys. A: Math. Gen. 39 (2006),
  12203-12210.
 
- Tran D.T., van der Kamp P.H., Quispel G.R.W., Involutivity of integrals of
  sine-Gordon, modified KdV and potential KdV maps,
  J. Phys. A: Math. Theor. 44 (2011), 295206, 13 pages,
  arXiv:1010.3471.
 
- van der Kamp P.H., Quispel G.R.W., The staircase method: integrals for periodic
  reductions of integrable lattice equations, J. Phys. A: Math. Theor.
  43 (2010), 465207, 34 pages, arXiv:1005.2071.
 
- Witte N.S., The correspondence between the Askey table of orthogonal
  polynomial systems and the Sakai scheme of discrete Painlevé equations,
  in preparation.
 
- Witte N.S., Ormerod C.M., Construction of a Lax pair for the $E_6^{(1)}$
  $q$-Painlevé system, SIGMA 8 (2012), 097, 27 pages,
  arXiv:1207.0041.
 
- Yamada Y., Padé method to Painlevé equations, Funkcial. Ekvac.
  52 (2009), 83-92.
 
- Yamada Y., Lax formalism for $q$-Painlevé equations with affine Weyl
  group symmetry of type $E^{(1)}_n$, Int. Math. Res. Not.
  2011 (2011), 3823-3838, arXiv:1004.1687.
 
 
 | 
 |