
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 004, 16 pages

Embedding Theorems for the Dunkl Harmonic

Oscillator on the Line
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1 Introduction

The subindex ev/odd is added to any space of functions on R to indicate its subspace of even/odd
functions; in particular, C∞ = C∞ev⊕C∞odd for C∞ := C∞(R). The Dunkl operator Tσ (σ > −1/2)
on C∞ is the perturbation of d

dx defined by Tσ = d
dx on C∞ev and Tσ = d

dx + 2σ 1
x on C∞odd. The

corresponding Dunkl harmonic oscillator is the perturbation Lσ = −T 2
σ + s2x2 of the harmonic

oscillator H = − d2

dx2
+ s2x2 (s > 0). The conjugation Eσ = |x|σTσ|x|−σ on |x|σC∞ is equal to

d
dx − σx

−1 on |x|σC∞ev and d
dx + σx−1 on |x|σC∞odd; note that |x|σC∞ev/odd consists of even/odd

functions, possibly not smooth or not even defined at 0. Up to the product by a constant,
Eσ was introduced by Yang [39]. In the form Tσ, this operator was generalized to Rn by
Dunkl [12, 13, 14], giving rise to what is now called Dunkl theory (see the survey [31]); in
particular, the Dunkl harmonic oscillator on Rn was studied in [15, 25, 26, 29]. See [27] for
further generalizations on R. Sometimes the terms Yang–Dunkl operator and Yang–Dunkl
harmonic oscillator are used in the case of R [27].

Let pk be the sequence of orthogonal polynomials for the measure e−sx
2 |x|2σdx, taken with

norm one and positive leading coefficient. Up to normalization, these are the generalized Her-
mite polynomials [32, p. 380, Problem 25]; see also [9, 10, 11, 16, 29, 30]. The corresponding
generalized Hermite functions are φk = pke

−sx2/2.

For each m ∈ N, let Sm be the Banach space of functions φ ∈ Cm(R) with supx |xiφ(j)(x)|<∞
for i + j ≤ m; the corresponding Fréchet space S =

⋂
m Sm is the Schwartz space on R.

With domain S, Lσ is essentially self-adjoint in L2(R, |x|2σdx), and the spectrum of its self-
adjoint extension, Lσ, consists of the eigenvalues (2k + 1 + 2σ)s (k ∈ N), with corresponding
eigenfunctions φk [29]. For each real m ≥ 0, let Wm

σ be the Hilbert space completion of S with
respect to the scalar product 〈φ, ψ〉Wm

σ
:= 〈(1 + Lσ)mφ, ψ〉σ, where 〈 , 〉σ denotes the scalar

product of L2(R, |x|2σdx), obtaining a Fréchet space W∞σ =
⋂
mW

m
σ . We show the following

embedding theorems; the second one is of Sobolev type.
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Theorem 1.1. For each m ∈ N, SMm,ev/odd

ev/odd ⊂Wm
σ,ev/odd continuously, where

Mm,ev/odd =


3m+ 3

2
+
m+ 1

4
dσe(dσe+ 3) + dσe if σ ≥ 0 and m is odd,

2m+ 3 if σ < 0 and m is odd,

Mm,ev =


3m+ 2

2
+
m

4
dσe(dσe+ 3) + dσe if σ ≥ 0 and m is even,

2m+ 2 if σ < 0 and m is even,

Mm,odd =


3m+ 4

2
+
m+ 2

4
dσe(dσe+ 3) + dσe if σ ≥ 0 and m is even,

2m+ 4 if σ < 0 and m is even.

Theorem 1.2. For all m ∈ N and mσ = m+1+ 1
2dσe(dσe+1), Wm′

σ,ev/odd ⊂ S
m
ev/odd continuously

if m′ > Nm,ev/odd, where Nm,ev = 2 and Nm,odd = 5 if mσ = 1, Nm,ev = 6 and Nm,odd = 5 if
mσ = 2, Nm,ev = 6 and Nm,odd = 7 if mσ = 3, and Nm,ev/odd = mσ + 3 for mσ ≥ 4.

Corollary 1.3. S = W∞σ as Fréchet spaces.

In other words, Corollary 1.3 states that an element φ ∈ L2(R, |x|2σdx) is in S if and only if the
“Fourier coefficients” 〈φ, φk〉σ are rapidly decreasing on k. This also means that S =

⋂
mD(Lmσ )

(S is the smooth core of Lσ with the terminology of [6]) because the sequence of eigenvalues
of Lσ is in O(k) as k →∞.

We introduce a version Smσ of every Sm, whose definition involves Tσ instead of d
dx . They

satisfy much simpler embeddings: S
dme+1
σ ⊂ Wm

σ , and Wm′
σ ⊂ Smσ if m′ −m > 1. Even though

S =
⋂
m Smσ , the inclusion relations between the spaces Smσ and Sm′ are complicated, giving rise

to the complexity of Theorems 1.1 and 1.2.

Other Sobolev type embedding theorems, for different operators and with different tech-
niques, were recently proved in [35, 36, 37].

Next, we consider other perturbations of H on R+. Let Sev,U denote the space of restrictions
of even Schwartz functions to some open U ⊂ R+, and set φk,U = φk|U .

Theorem 1.4. Let P = H − 2f1
d

dx + f2, where f1 ∈ C1(U) and f2 ∈ C(U) for some open
U ⊂ R+ of full Lebesgue measure. Assume that f2 = σ(σ− 1)x−2− f2

1 − f ′1 for some σ > −1/2.
Let h = xσe−F1, where F1 ∈ C2(U) is a primitive of f1. Then the following properties hold:

(i) P , with domain hSev,U , is essentially self-adjoint in L2(U, e2F1dx);

(ii) the spectrum of its self-adjoint extension, P, consists of the eigenvalues (4k + 1 + 2σ)s
(k ∈ N) with multiplicity one and normalized eigenfunctions

√
2hφ2k,U ; and

(iii) the smooth core of P is hSev,U .

This theorem follows by showing that the stated condition on f1 and f2 characterizes the
cases where P can be obtained by the following process: first, restricting Lσ to even functions,
then restricting to U , and finally conjugating by h. The term of P with d

dx can be removed by
conjugation with the product of a positive function, obtaining the operator H +σ(σ− 1)x−2; in
this way, we get all operators of the form H + cx−2 with c > −1/4.

The conditions of Theorem 1.4 are satisfied by P = H−2c1x
−1 d

dx +c2x
−2 (c1, c2 ∈ R) on R+

if and only if there is some a ∈ R such that a2 + (2c1 − 1)a − c2 = 0 and a + c1 > −1/2; in
this case, h = xa and e2F1 = x2c1 . For some c1, c2 ∈ R, there are two values of a satisfying
these conditions, obtaining two different self-adjoint operators defined by P in different Hilbert
spaces. For instance, Lσ may define a self-adjoint operator when σ ≤ −1/2.
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This example is applied in [2] to prove a new type of Morse inequalities on strata of compact
stratifications [20, 33, 34] with adapted metrics [5, 23, 24], where the Witten’s perturbation [38]
is used for the minimal/maximal ideal boundary conditions of de Rham complex [6, 7, 8]. The
version of Morse functions used in [2] is different from the version of Goresky–MacPherson [18].
More precisely, in the local conic model of a stratification around each critical point, by induction
on the depth of the stratification, it is assumed that the Laplacian of the minimal/maximal
boundary condition of the de Rham complex of the link (section of the cone) has a nice spectral
decomposition. Using this, the Witten’s perturbation of the de Rham complex of the cone
splits into an infinite direct sum of elliptic complexes of two simple types, with length one and
two, which represent the radial direction of Witten’s perturbed complex. It turns out that the
Witten’s perturbed Laplacian of these simple complexes is described by the above operator P ,
and the two possible choices of the constant a give rise to the minimal/maximal ideal boundary
conditions. In this way, Theorem 1.4 becomes a key ingredient of [2].

2 Preliminaries

2.1 Dunkl operator on the line

For any φ ∈ C∞ := C∞(R), there exists some ψ ∈ C∞ so that φ(x)− φ(0) = xψ(x); moreover

ψ(m)(x) =

∫ 1

0
tmφ(m+1)(tx)dt (1)

for all1 m ∈ N (see e.g. [19, Theorem 1.1.9]). Let us use the notation ψ = x−1φ. The Dunkl
operator on Tσ (σ ∈ R) on C∞ is the perturbation of d

dx defined by

(Tσφ)(x) = φ′(x) + 2σ
φ(x)− φ(−x)

x
.

Consider matrix expressions of operators on C∞ with respect to the decomposition C∞ =
C∞ev ⊕ C∞odd, as direct sum of subspaces of even and odd functions. For each function h, the
notation h is also used for the operator of multiplication by h. Then

d

dx
=

 0
d

dx
d

dx
0

 , x =

(
0 x
x 0

)
,

Tσ =

 0
d

dx
+ 2σx−1

d

dx
0

 =
d

dx
+ 2σ

(
0 x−1

0 0

)

on C∞. With Σ =

(
σ 0
0 −σ

)
, we get

[Tσ, x] = 1 + 2Σ, TσΣ + ΣTσ = xΣ + Σx = 0. (2)

2.2 Dunkl harmonic oscillator on the line

On C∞, the harmonic oscillator, and the annihilation and creation operators are H = − d2

dx2
+

s2x2, A = sx+ d
dx and A′ = sx− d

dx (s > 0). Their perturbations L = −T 2
σ + s2x2, B = sx+Tσ

1We adopt the convention 0 ∈ N.
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and B′ = sx − Tσ are called Dunkl harmonic oscillator, and Dunkl annihilation and creation
operators. By (2),

L = BB′ − (1 + 2Σ)s = B′B + (1 + 2Σ)s =
1

2
(BB′ +B′B), (3)

[L,B] = −2sB, [L,B′] = 2sB′, (4)

[B,B′] = 2s(1 + 2Σ), (5)

[L,Σ] = BΣ + ΣB = B′Σ + ΣB′ = 0. (6)

For each m ∈ N, let Sm be the space of functions φ ∈ C∞ such that

‖φ‖Sm =
∑

i+j≤m
sup
x
|xiφ(j)(x)| <∞.

This expression defines a norm ‖ ‖Sm on Sm, which becomes a Banach space. We have
Sm+1 ⊂ Sm continuously2, and S =

⋂
m Sm, with the induced Fréchet topology, is the Schwartz

space on R. Note that ‖φ′‖Sm ≤ ‖φ‖Sm+1 for all m.

We can restrict the above decomposition of C∞ to every Sm and S, obtaining Sm = Smev⊕Smodd

and S = Sev ⊕ Sodd. The matrix expressions of operators on S are taken with respect to this
decomposition. For φ ∈ C∞ev , ψ = x−1φ and i, j ∈ N, we get from (1) that

∣∣xiψ(j)(x)
∣∣ ≤ ∫ 1

0
tj−i

∣∣(tx)iφ(j+1)(tx)
∣∣dt ≤ sup

y∈R

∣∣yiφ(j+1)(y)
∣∣

for all x ∈ R. So ‖ψ‖Sm ≤ ‖φ‖Sm+1 for all m ∈ N, obtaining that Sodd = xSev and x−1 :
C∞odd → C∞ev restricts to a continuous operator x−1 : Sodd → Sev. Hence x : Sev → Sodd is an
isomorphism of Fréchet spaces, and Tσ, B, B′ and L define continuous operators on S.

Let 〈 , 〉σ and ‖ ‖σ be the scalar product and norm of L2(R, |x|2σdx). Suppose from now
on that σ > −1/2, obtaining that S is dense in L2(R, |x|2σdx). The following properties hold
considering these operators in L2(R, |x|2σdx) with domain S: −Tσ is adjoint of Tσ, B′ is adjoint
of B, and L is essentially self-adjoint. Let L, or Lσ, denote the self-adjoint extension of L (with
domain S). Its spectrum consists of the eigenvalues (2k + 1 + 2σ)s (k ∈ N). The corresponding
normalized eigenfunctions φk are inductively defined by

φ0 = s(2σ+1)/4Γ(σ + 1/2)−1/2e−sx
2/2, (7)

φk =

{
(2ks)−1/2B′φk−1 if k is even,

(2(k + 2σ)s)−1/2B′φk−1 if k is odd,
k ≥ 1. (8)

Furthermore

Bφ0 = 0, (9)

Bφk =

{
(2ks)1/2φk−1 if k is even,

(2(k + 2σ)s)1/2φk−1 if k is odd,
k ≥ 1. (10)

These properties follow from (3)–(6), like in the case of H.

2For topological vector spaces X and Y , it is said that X ⊂ Y continuously if X is a linear subspace of Y and
the inclusion map X ↪→ Y is continuous.
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2.3 Generalized Hermite polynomials

By (7), (8) and the definition of B′, we get φk = pke
−sx2/2, where pk is the sequence of polyno-

mials inductively given by p0 = s(2σ+1)/4Γ(σ + 1/2)−1/2 and

pk =

{
(2ks)−1/2(2sxpk−1 − Tσpk−1) if k is even,

(2(k + 2σ)s)−1/2(2sxpk−1 − Tσpk−1) if k is odd,
k ≥ 1. (11)

Up to normalization, pk and φk are the generalized Hermite polynomials and functions [32,
p. 380, Problem 25]. Each pk is of degree k, even/odd if k is even/odd, and with positive leading
coefficient. Moreover Tσp0 = 0 and

Tσpk =

{
(2ks)1/2pk−1 if k is even,

(2(k + 2σ)s)1/2pk−1 if k is odd,
k ≥ 1. (12)

From (11) and (12), we obtain the recursion formula

pk =

{
k−1/2

(
(2s)1/2xpk−1 − (k − 1 + 2σ)1/2pk−2

)
if k is even,

(k + 2σ)−1/2
(
(2s)1/2xpk−1 − (k − 1)1/2pk−2

)
if k is odd.

(13)

By (13) and induction on k, we easily get the following when k is odd3:

x−1pk =
∑

`∈{0,2,...,k−1}

(−1)
k−`−1

2

√
(k − 1)(k − 3) · · · (`+ 2)2s

(k + 2σ)(k − 2 + 2σ) · · · (`+ 1 + 2σ)
p`. (14)

The following theorem contains a simplified version of the asymptotic estimates satisfied
by φk and ξk = |x|σφk. They can be obtained by expressing pn in terms of the Laguerre
polynomials [30, 31], whose asymptotic estimates are studied in [3, 17, 21, 22]. The method of
Bonan–Clark [4] can be also applied [1].

Theorem 2.1. There exist C,C ′, C ′′ > 0, depending on σ and s, such that:

(i) if k is odd or σ ≥ 0, then ξ2
k(x) ≤ C ′k−1/6 for all x ∈ R;

(ii) if k is even and positive, and σ < 0, then ξ2
k(x) ≤ C ′′k−1/6 for |x| ≥ 1; and

(iii) if σ < 0, then φ2
k(x) ≤ C ′′ for all k and |x| ≤ 1.

3 Perturbed Schwartz space

We introduce a perturbed version Smσ of each Sm that will be appropriate to show our embedding
results. Since Smσ must contain the functions φk, Theorem 2.1 indicates that different definitions
must be given for σ ≥ 0 and σ < 0.

When σ ≥ 0, for any φ ∈ C∞ and m ∈ N, let

‖φ‖Smσ =
∑

i+j≤m
sup
x
|x|σ|xiT jσφ(x)|. (15)

This defines a norm ‖ ‖Smσ on the linear space of functions φ ∈ C∞ with ‖φ‖Smσ <∞, and let Smσ
denote the corresponding Banach space completion. There are direct sum decompositions into
subspaces of even and odd functions, Smσ = Smσ,ev ⊕ Smσ,odd.

3As a convention, the product of an empty set of factors is 1. Thus (k − 1)(k − 3) · · · (` + 2) = 1 for ` = k − 1
in (14).
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When σ < 0, the even and odd functions are considered separately: let

‖φ‖Smσ =
∑

i+j≤m, i+j even

(
sup
|x|≤1

|xi(T jσφ)(x)|+ sup
|x|≥1

|x|σ|xi(T jσφ)(x)|

)
+

∑
i+j≤m, i+j odd

sup
x 6=0
|x|σ|xi(T jσφ)(x)| (16)

for φ ∈ C∞ev , and

‖φ‖Smσ =
∑

i+j≤m, i+j even

sup
x 6=0
|x|σ|xi(T jσφ)(x)|

+
∑

i+j≤m, i+j odd

(
sup
|x|≤1

|xi(T jσφ)(x)|+ sup
|x|≥1

|x|σ|xi(T jσφ)(x)|

)
(17)

for φ ∈ C∞odd. These expressions define a norm ‖ ‖Smσ on the linear spaces of functions φ ∈ C∞ev/odd

with ‖φ‖Smσ < ∞. The corresponding Banach space completions will be denoted by Smσ,ev/odd,
and let Smσ = Smσ,ev ⊕ Smσ,odd.

In any case, there are continuous inclusions Sm+1
σ ⊂ Smσ , and a perturbed Schwartz space is

defined as Sσ =
⋂
m Smσ , with the corresponding Fréchet topology, which decomposes as direct

sum of the subspaces of even and odd functions, Sσ = Sσ,ev ⊕ Sσ,odd; in particular, S0 = S. It
easily follows that Sσ consists of functions that are C∞ on R \ {0} but a priori possibly not
even defined at zero, and Smσ ∩ C∞ is dense in Smσ for all m; thus Sσ ∩ C∞ is dense in Sσ.

Obviously, Σ defines a bounded operator on each Smσ . It is also easy to see that Tσ defines
a bounded operator Sm+1

σ → Smσ for any m; notice that, when σ < 0, the role played by
the parity of i + j fits well to prove this property. Similarly, x defines a bounded operator
Sm+1
σ → Smσ for any m because, by (2),

[T jσ , x] =

{
jT j−1

σ if j is even,

(j + 2Σ)T j−1
σ if j is odd.

So B and B′ define bounded operators Sm+1
σ → Smσ , and L a bounded operator Sm+2

σ → Smσ .
Thus Tσ, x, Σ, B, B′ and L define continuous operators on Sσ.

In order to prove Theorems 1.1 and 1.2, we introduce an intermediate weakly perturbed
Schwartz space Sw,σ. Like Sσ, it is a Fréchet space of the form Sw,σ =

⋂
m Smw,σ, where each Smw,σ

is the Banach space defined like Smσ by using d
dx instead of Tσ in the right hand sides of (15)–(17);

in particular, S0
w,σ = S0

σ as Banach spaces. Let ‖ ‖Smw,σ denote the norm of Smw,σ. As before, Sw,σ
consists of functions which are C∞ on R \ {0} but a priori possibly not even defined at zero,
Sw,σ ∩C∞ is dense in Sw,σ, there is a canonical decomposition Sw,σ = Sw,σ,ev⊕Sw,σ,odd, and d

dx

and x define bounded operators on Sm+1
w,σ → Smw,σ. Thus d

dx and x define continuous operators
on Sw,σ.

Lemma 3.1. If σ ≥ 0, then Sm+dσe ⊂ Smw,σ continuously.

Proof. Let φ ∈ S. For all i and j, we have |x|σ|xiφ(j)(x)| ≤ |xi+dσeφ(j)(x)| for |x| ≥ 1, and
|x|σ|xiφ(j)(x)| ≤ |xiφ(j)(x)| for |x| ≤ 1. So ‖φ‖Smw,σ ≤ ‖φ‖Sm+dσe . �

Lemma 3.2. If σ ≥ 0, Smσw,σ ⊂ Sm continuously, where mσ = m+ 1 + 1
2dσe(dσe+ 1).

Proof. Let φ ∈ Sw,σ. For all i and j,∣∣xiφ(j)(x)
∣∣ ≤ |x|σ∣∣xiφ(j)(x)

∣∣ (18)

for |x| ≥ 1. It remains to prove an inequality of this type for |x| ≤ 1, which will be a consequence
of the following assertion.
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Claim 1. For each n ∈ N, there are finite families of real numbers, cna,b, d
n
k,` and enu,v, where the

indices a, b, k, `, u and v run in finite subsets of N with b, `, v ≤ Mn = 1 + n(n+1)
2 and k ≥ n,

such that, for all φ ∈ C∞,

φ(x) =
∑
a,b

cna,bx
aφ(b)(1) +

∑
k,`

dnk,`x
kφ(`)(x) +

∑
u,v

enu,vx
u

∫ 1

x
tnφ(v)(t)dt.

Assuming that Claim 1 is true, the proof can be completed as follows. Let φ ∈ Sw,σ and set
n = dσe. For |x| ≤ 1, according to Claim 1, |φ(x)| is bounded by∑

a,b

|cna,b|
∣∣φ(b)(1)

∣∣+
∑
k,`

|dnk,`|
∣∣xkφ(`)(x)

∣∣+
∑
u,v

|enu,v|2 max
|t|≤1

∣∣tnφ(v)(t)
∣∣

≤
∑
i,j

|cna,b|
∣∣φ(b)(1)

∣∣+
∑
k,`

|dnk,`||x|σ
∣∣φ(`)(x)

∣∣+
∑
u,v

|enu,v|2 max
|t|≤1
|t|σ
∣∣φ(v)(t)

∣∣.
Let m, i, j ∈ N with i + j ≤ m. By applying the above inequality to the function xiφ(j), and
expressing each derivative (xiφ(j))(r) as a linear combination of functions of the form xpφ(q) with
p+ q ≤ i+ j + r, it follows that there is some C ≥ 1, depending only on σ and m, such that∣∣xiφ(j)(x)

∣∣ ≤ C‖φ‖Si+j+Mnw,σ
(19)

for |x| ≤ 1. By (18) and (19), ‖φ‖Sm ≤ C‖φ‖Smσw,σ because mσ = m+Mn.
Now, let us prove Claim 1. By induction on n and using integration by parts, it is easy to

prove that∫ 1

x
tnφ(n+1)(t)dt =

n∑
r=0

(−1)n−r
n!

r!

(
φ(r)(1)− xrφ(r)(x)

)
. (20)

This shows directly Claim 1 for n ∈ {0, 1}. Proceeding by induction, let n ≥ 2 and assume that
Claim 1 holds for n − 1. By (20), it is enough to find appropriate expressions of xrφ(r)(x) for
0 < r < n. For that purpose, apply Claim 1 for n − 1 to each function φ(r), and multiply the
resulting equality by xr to get

xrφ(r)(x) =
∑
a,b

cn−1
a,b x

r+aφ(r+b)(1) +
∑
k,`

dn−1
k,` x

r+kφ(r+`)(x)

+
∑
u,v

en−1
u,v x

r+u

∫ 1

x
tn−1φ(r+v)(t)dt,

where a, b, k, `, u and v run in finite subsets of N with b, `, v ≤ Mn−1 and k ≥ n − 1; thus
r+ k ≥ n and r+ b, r+ `, r+ v ≤ n− 1 +Mn−1 = Mn− 1. Therefore it only remains to rise the
exponent of t by a unit in the integrals of the last sum. Once more, integration by parts makes
the job:∫ 1

x
tnφ(r+v+1)(t)dt = φ(r+v)(1)− xnφ(r+v)(x)− n

∫ 1

x
tn−1φ(r+v)dt. �

Lemma 3.3. If σ < 0, then Sm+1 ⊂ Smw,σ continuously.

Proof. This is proved by induction on m. For φ ∈ C∞ev and |x| ≥ 1, we have |x|σ|φ(x)| ≤ |φ(x)|,
obtaining ‖ ‖S0w,σ ≤ ‖ ‖S0 on C∞ev . On the other hand, for φ ∈ C∞odd and ψ = x−1φ ∈ C∞ev , we get

|x|σ|φ(x)| ≤

{
|ψ(x)| if 0 < |x| ≤ 1,

|φ(x)| if |x| ≥ 1.

So ‖φ‖S0w,σ ≤ max{‖φ‖S0 , ‖ψ‖S0} ≤ ‖φ‖S1 by (1).
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Now, assume that m ≥ 1 and the result holds for m−1. Let i, j ∈ N such that i+j ≤ m, and
let φ ∈ Sev∪Sodd. Independently of the parity of φ and i+j, we have |x|σ|xiφ(j)(x)| ≤ |xiφ(j)(x)|
for |x| ≥ 1.

Suppose that φ ∈ Sev. If i = 0 and j is odd, then φ(j) ∈ Sodd. Thus there is some ψ ∈ Sev such
that φ(j) = xψ, obtaining |x|σ|φ(j)(x)| ≤ |ψ(x)| for 0 < |x| ≤ 1. If i + j is odd and i > 0, then
|x|σ|xiφ(j)(x)| ≤ |xi−1φ(j)(x)| for 0 < |x| ≤ 1. Hence, by (1), there is some C > 0, independent
of φ, such that

‖φ‖Smw,σ ≤ C max{‖φ‖Sm , ‖ψ‖S0} ≤ C max
{
‖φ‖Sm , ‖φ(j)‖S1

}
≤ C‖φ‖Sm+1 .

Finally, assume φ ∈ Sodd, and let ψ = x−1φ ∈ Sev. If i is even and j = 0, then |x|σ|xiφ(x)| ≤
|xiψ(x)| for 0 < |x| ≤ 1. If i+ j is even and j > 0, then

|x|σ
∣∣xiφ(j)(x)

∣∣ ≤ ∣∣xiψ(j)(x)
∣∣+ j|x|σ

∣∣xiψ(j−1)(x)
∣∣

for 0 < |x| ≤ 1 because [ dj

dxj
, x] = j dj−1

dxj−1 . Therefore, by (1) and the induction hypothesis, there
are some C ′, C ′′ > 0, independent of φ, such that

‖φ‖Smw,σ ≤ C
′max

{
‖φ‖Sm , ‖ψ‖Sm + ‖ψ‖Sm−1

w,σ

}
≤ C ′′‖φ‖Sm+1 . �

Lemma 3.4. If σ < 0, then Sm+1
w,σ ⊂ Sm continuously.

Proof. Let i, j ∈ N such that i+ j ≤ m. Since

∣∣xiφ(j)(x)
∣∣ ≤ {|x|σ∣∣xiφ(j)(x)

∣∣ if 0 < |x| ≤ 1,

|x|σ
∣∣xi+1φ(j)(x)

∣∣ if |x| ≥ 1.

for any φ ∈ C∞, we get ‖φ‖Sm ≤ ‖φ‖Sm+1
w,σ

. �

Corollary 3.5. S = Sw,σ as Fréchet spaces.

Corollary 3.6. x−1 defines a bounded operator Sm′w,σ,odd → Smw,σ,ev, where

m′ =

{
m+ 2 + 1

2dσe(dσe+ 3) if σ ≥ 0,

m+ 3 if σ < 0.

Proof. If σ ≥ 0, the composite

Sm+2+ 1
2
dσe(dσe+3)

w,σ,odd ↪→ Sm+dσe+1
odd

x−1

−−−−→ Sm+dσe
ev ↪→ Smw,σ,ev

is bounded by Lemmas 3.1 and 3.2. If σ < 0, the composite

Sm+3
w,σ,odd ↪→ S

m+2
odd

x−1

−−−−→ Sm+1
ev ↪→ Smw,σ,ev,

is bounded by Lemmas 3.3 and 3.4. �

Corollary 3.7. x−1 defines a continuous operator Sw,σ,odd → Sw,σ,ev.

Lemma 3.8. SMm,ev/odd

w,σ,ev/odd ⊂ S
m
σ,ev/odd continuously, where

Mm,ev/odd =


3m

2
+
m

4
dσe(dσe+ 3) if σ ≥ 0 and m is even,

2m if σ < 0 and m is even,
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Mm,ev =


3m− 1

2
+
m− 1

4
dσe(dσe+ 3) if σ ≥ 0 and m is odd,

2m− 1 if σ < 0 and m is odd,

Mm,odd =


3m+ 1

2
+
m+ 1

4
dσe(dσe+ 3) if σ ≥ 0 and m is odd,

2m+ 1 if σ < 0 and m is odd.

Proof. This follows by induction on m. It is true for m = 0 because S0
w,σ = S0

σ as Banach
spaces. Now, let m ≥ 1, and assume that the result holds for m− 1.

For φ ∈ C∞ev , i + j ≤ m with j > 0, and x ∈ R, we have |xi(T jσφ)(x)| = |xi(T j−1
σ φ′)(x)|

with φ′ ∈ C∞odd, obtaining ‖φ‖Smσ ≤ ‖φ
′‖Sm−1

σ
. But, by the induction hypothesis and since

Mm,ev = Mm−1,odd + 1, there are some C,C ′ > 0, independent of φ, such that

‖φ′‖Sm−1
σ
≤ C‖φ′‖

S
Mm−1,odd
w,σ

≤ C ′‖φ‖SMm,evw,σ
.

For φ ∈ C∞odd, let ψ = x−1φ, and take i, j and x as above. Then∣∣xi(T jσφ)(x)
∣∣ ≤ ∣∣xi(T j−1

σ φ′)(x)
∣∣+ 2|σ|

∣∣xi(T j−1
σ ψ

)
(x)
∣∣

with φ′, ψ ∈ C∞ev , obtaining ‖φ‖Smσ ≤ ‖φ
′‖Sm−1

σ
+2|σ|‖ψ‖Sm−1

σ
. But, by the induction hypothesis,

Corollary 3.6, and since

Mm,odd =

{
Mm−1,ev + 2 + 1

2dσe(dσe+ 3) if σ ≥ 0,

Mm−1,ev + 3 if σ < 0,

there are some C,C ′ > 0, independent of φ, such that

‖φ′‖Sm−1
σ

+ 2|σ|‖ψ‖Sm−1
σ
≤ C

(
‖φ′‖

S
Mm−1,ev
w,σ

+ ‖ψ‖
S
Mm−1,ev
w,σ

)
≤ C ′‖φ‖

S
Mm,odd
w,σ

. �

Corollary 3.9. Sw,σ ⊂ Sσ continuously.

Corollary 3.10. S
M ′
m,ev/odd

ev/odd ⊂ Smσ,ev/odd continuously, where, with the notation of Lemma 3.8,

M ′m,ev/odd =

{
Mm,ev/odd + dσe if σ ≥ 0,

Mm,ev/odd + 1 if σ < 0.

Proof. This follows from Lemmas 3.1, 3.3 and 3.8. �

4 Perturbed Sobolev spaces

Observe that Sσ ⊂ L2(R, |x|2σdx). Like in the case where S is considered as domain, it is easy
to check that, in L2(R, |x|2σdx), with domain Sσ, B is adjoint of B′ and L is symmetric.

Lemma 4.1. Sσ is a core4 of L.

Proof. Let R denote the restriction of L to Sσ. Then L ⊂ R ⊂ R∗ ⊂ L∗ = L in L2(R, |x|2σdx)
because S ⊂ Sσ by Corollaries 3.5 and 3.9. �

4Recall that a core of a closed densely defined operator T between Hilbert spaces is any subspace of its
domain D(T ) which is dense with the graph norm.
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For each m ∈ R, let Wm
σ be the Hilbert space completion of S with respect to the scalar

product 〈 , 〉Wm
σ

defined by 〈φ, ψ〉Wm
σ

= 〈(1 + L)mφ, ψ〉σ. The corresponding norm will be
denoted by ‖ ‖Wm

σ
, whose equivalence class is independent of the parameter s used to define L.

In particular, W 0
σ = L2(R, |x|2σdx). As usual, Wm′

σ ⊂ Wm
σ when m′ > m, and let W∞σ =⋂

mW
m
σ with the induced Fréchet topology. Once more, there are direct sum decompositions

into subspaces of even and odd (generalized) functions, Wm
σ = Wm

σ,ev⊕Wm
σ,odd (m ∈ [0,∞]). By

Lemma 4.1, Sσ can be used instead of S in the definition of Wm
σ .

Obviously, L defines a bounded operator Wm+2
σ → Wm

σ for each m, and therefore a con-
tinuous operator on W∞σ . By (6), Σ defines a bounded operator on each Wm

σ , and therefore
a continuous operator on W∞σ . Moreover B and B′ define bounded operators Wm+1

σ →Wm
σ for

each m ∈ N; this follows easily by induction on m, using (3) and (4) (the details of the proof
are omitted because this observation will not be used). Thus L, Σ, B and B′ define bounded
operators on W∞σ . Also on the spaces Wm

σ , the parity of (generalized) functions is preserved
by L and Σ, and reversed by B and B′. Observe that B′ is not adjoint of B in Wm

σ for m 6= 0.
The motivation of our tour through perturbed Schwartz spaces is the following embedding

results; the second one is a version of the Sobolev embedding theorem.

Proposition 4.2. Sm+1
σ ⊂Wm

σ continuously for all m ∈ N.

Proposition 4.3. For all m ∈ N, Wm′
σ ⊂ Smσ continuously if m′ −m > 1.

Corollary 4.4. Sσ = W∞σ as Fréchet spaces.

For each non-commutative polynomial p (of two variables, X and Y ), let p′ denote the non-
commutative polynomial obtained by reversing the order of the variables in p; e.g., if p(X,Y ) =
X2Y 3X, then p′(X,Y ) = XY 3X2. It will be said that p is symmetric if p(X,Y ) = p′(Y,X).
Note that p′(Y,X)p(X,Y ) is symmetric for any p. Given any non-commutative polynomial p,
the continuous operators p(B,B′) and p′(B′, B) on Sσ are adjoint of each other in L2(R, |x|2σdx);
thus p(B,B′) is a symmetric operator if p is symmetric.

Lemma 4.5. For m ∈ N, we have (1 + L)m =
∑

a q
′
a(B

′, B)qa(B,B
′) for some finite family of

homogeneous non-commutative polynomials qa of degree ≤ m.

Proof. The result follows easily from the following assertions.

Claim 2. If m is even, then Lm = gm(B,B′)2 for some symmetric homogeneous non-commuta-
tive polynomial gm of degree m.

Claim 3. If m is odd, then

Lm = g′m,1(B′, B)gm,1(B,B′) + g′m,2(B′, B)gm,2(B,B′)

for some homogeneous non-commutative polynomials gm,1 and gm,2 of degree m.

If m is even, then Lm/2 = gm(B,B′) for some symmetric homogeneous non-commutative
polynomial gm of degree m by (3). So Lm = gm(B,B′)2, showing Claim 2.

If m is odd, write Lbm/2c = fm(B,B′) as above for some symmetric homogeneous non-
commutative polynomial fm of degree m− 1. Then, by (3),

Lm =
1

2
fm(B,B′)(BB′ +B′B)fm(B,B′).

Thus Claim 3 follows with

gm,1(B,B′) =
1√
2
B′fm(B,B′), gm,2(B,B′) =

1√
2
Bfm(B,B′). �
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Proof of Proposition 4.2. By the definitions of B and B′, and (15)–(17), for each homoge-
neous non-commutative polynomial p of three variables with degree d ≤ m+1, there exists some
Cp > 0 such that, for all φ ∈ Sσ: if σ < 0, |x| ≤ 1, and φ and d have the same parity, then
|(p(x,B,B′)φ)(x)| ≤ Cp‖φ‖Sm+1

σ
; and, otherwise, |x|σ|(p(x,B,B′)φ)(x)| ≤ Cp‖φ‖Sm+1

σ
.

With the notation of Lemma 4.5, let da denote the degree of each qa, and let q̄a(x,B,B
′) =

xqa(B,B
′). If σ ≥ 0, then

‖φ‖2Wm
σ

=
∑
a

‖qa(B,B′)φ‖2σ =
∑
a

∫ ∞
−∞
|(qa(B,B′)φ)(x)|2|x|2σdx

≤ 2
∑
a

(
C2
qa + C2

q̄a

∫ ∞
1

x−2dx

)
‖φ‖2Sm+1

σ

for φ ∈ Sσ. Similarly, if σ < 0, then ‖φ‖2Wm
σ

is bounded by

2

 ∑
da even

C2
qa

∫ 1

0
x2σdx+

∑
da odd

C2
qa +

∑
a

C2
q̄a

∫ ∞
1

x−2dx

 ‖φ‖2Sm+1
σ

for φ ∈ Sσ,ev, and by

2

 ∑
da even

C2
qa +

∑
da odd

C2
qa

∫ 1

0
x2σdx+

∑
a

C2
q̄a

∫ ∞
1

x−2dx

 ‖φ‖2Sm+1
σ

for φ ∈ Sσ,odd. �

For c = (ck) and c′ = (c′k) in RN, and m ∈ R, the expressions ‖c‖Cm = supk |ck|(1 + k)m and
〈c, c′〉`2m =

∑
k ckc

′
k(1 + k)m define a norm and scalar product with possible infinite values, and

let ‖ ‖`2m denote the norm with possible infinite values induced by 〈 , 〉`2m . Then Cm = {c ∈ RN |
‖c‖Cm <∞} becomes a Banach space with ‖ ‖Cm , and `2m = {c ∈ RN | ‖c‖`2m <∞} is a Hilbert
space with 〈 , 〉`2m . If m′ > m, then Cm′ ⊂ Cm and `2m′ ⊂ `2m continuously. Let C∞ =

⋂
m Cm

and `2∞ =
⋂
m `

2
m, with the induced Fréchet topologies. It is said that c is even/odd if ck = 0

for odd/even k. There are direct sum decompositions into subspaces of even and odd sequences,
Cm = Cm,ev ⊕ Cm,odd and `2m = `2m,ev ⊕ `2m,odd (m ∈ R ∪ {∞}).

Lemma 4.6. `22m ⊂ Cm and Cm′ ⊂ `2m continuously if 2m′ −m > 1.

Proof. It is easy to see that ‖c‖Cm ≤ ‖c‖`22m and ‖c‖`2m ≤ ‖c‖Cm′
(∑

k(1 + k)m−2m′
)1/2

for any

c ∈ C∞, where the last series is convergent because m− 2m′ < −1. �

Corollary 4.7. `2∞ = C∞ as Fréchet spaces.

According to Section 2.2, the “Fourier coefficients” mapping φ 7→ (〈φk, φ〉σ) defines a quasi-
isometry Wm

σ → `2m for all finite m, and therefore an isomorphism W∞σ → C∞ of Fréchet espaces.
This map is compatible with the decompositions into even and odd subspaces.

Corollary 4.8. Any φ ∈ L2
(
R, |x|2σdx

)
is in Sσ if and only if its “Fourier coefficients” 〈φk, φ〉σ

are rapidly decreasing on k.

Proof. By Corollary 4.4, the “Fourier coefficients” mapping defines an isomorphism Sσ → C∞
of Fréchet spaces. �

The operator `2m′ ↪→ `2m is compact if m′ > m (see e.g. [28, Theorem 5.8]). So, by using the
“Fourier coefficients” mapping, the operator Wm′

σ ↪→ Wm
σ is compact if m′ > m (a version of

the Rellich theorem).
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Proof of Proposition 4.3. For φ ∈ Sσ, its “Fourier coefficients” ck = 〈φk, φ〉σ form a se-
quence c = (ck) in C∞, and

∑
k |ck|(1 +k)m/2 ≤ ‖c‖`2

m′
(
∑

k(1 +k)m−m
′
)1/2 by Cauchy–Schwartz

inequality, where the last series is convergent since m−m′ < −1. Therefore there is some C > 0,
independent of φ, such that∑

k

|ck|(1 + k)m/2 ≤ C‖φ‖Wm′
σ
. (21)

On the other hand, for all i, j ∈ N with i + j ≤ m, there is some homogeneous non-
commutative polynomial pij of degree i + j such that xiT jσ = pij(B,B

′). Then, by (8)–(10),
there is some Cij > 0, independent of φ, such that

|〈φk, xiT jσφ〉σ| ≤ Cij(1 + k)m/2
∑

|`−k|≤m

|c`|. (22)

Assume that σ ≥ 0. By (21), (22) and Theorem 2.1(i), there is some C ′ij > 0, independent of
φ and x0, so that

|x0|σ|(xiT jσφ)(x0)| ≤ |x0|σ
∑
k

|〈φk, xiT jσφ〉σ||φk(x0)|

=
∑
k

|〈φk, xiT jσφ〉σ||ξk(x0)| ≤ C ′ij‖φ‖Wm′
σ

(23)

for all x0 ∈ R. Hence ‖φ‖Smσ ≤ C
′‖φ‖Wm′

σ
for some C ′ > 0 independent of φ.

Now, suppose that σ < 0. From (21), (22), and Theorem 2.1(ii),(iii), it follows that there is
some C ′ij > 0, independent of φ and x0, such that

|(xiT jσφ)(x0)| ≤
∑
k

|〈φk, xiT jσφ〉σ||φk(x0)| ≤ C ′ij‖φ‖Wm′
σ

if φ and i + j have the same parity, and |x0| ≤ 1; otherwise, |x0|σ|(xiT jσφ)(x0)| ≤ C ′ij‖φ‖Wm′
σ

like in (23). So ‖φ‖Smσ ≤ C
′‖φ‖Wm′

σ
with C ′ > 0 independent of φ. �

As suggested by (14), consider the mapping c = (ck) 7→ Ξ(c) = (d`), where c is odd and Ξ(c)
is even, with

d` =
∑

k∈{`+1,`+3,... }

(−1)
k−`−1

2

√
(k − 1)(k − 3) · · · (`+ 2)2s

(k + 2σ)(k − 2 + 2σ) · · · (`+ 1 + 2σ)
ck

for ` even, assuming that this series is convergent.

Lemma 4.9. Ξ defines a bounded map `2m′,odd → Cm,ev if m′ −m > 1.

Proof. By the Cauchy–Schwartz inequality,

‖d‖Cm = sup
`

∑
k∈{`+1,`+3,... }

√
(k − 1)(k − 3) · · · (`+ 2)2s

(k + 2σ)(k − 2 + 2σ) · · · (`+ 1 + 2σ)
|ck|(1 + `)m

≤
√

2s sup
`

∑
k∈{`+1,`+3,... }

|ck|(1 + `)m

≤
√

2s‖c‖`2
m′

sup
`

( ∑
k∈{`+1,`+3,... }

(1 + k)−m
′
(1 + `)m

)1/2
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≤
√

2s‖c‖`2
m′

(∑
k

(1 + k)m−m
′
)1/2

,

where the last series is convergent because m−m′ < −1. �

Corollary 4.10. x−1 defines a bounded operator Sm′σ,odd → Smσ,ev if 2m′ > m+ 6.

Proof. Since 2m′ > m + 6, there are m1,m2 ∈ R so that m′ − m2 > 2, 2m2 − m1 > 1 and
m1 −m > 1. Then, by Propositions 4.2 and 4.3, Lemmas 4.6 and 4.9, and using the “Fourier
coefficients” mapping, we get the composition of bounded maps,

Sm′σ,odd ↪→Wm′−1
σ,odd → `2m′−1,odd

Ξ−→ Cm2,ev ↪→ `2m1,ev →Wm1
σ,ev ↪→ Smσ,ev,

which extends x−1 : Sodd → Sev by (14). �

Question 4.11. Is it possible to prove Corollary 4.10 without using (14)?

Corollary 4.12. x−1 defines a continuous operator Sσ,odd → Sσ,ev.

Lemma 4.13. SMm,ev/odd

σ,ev/odd ⊂ Smw,σ,ev/odd continuously for all m, where M0,ev/odd = 0, M1,ev = 1,
M1,odd = M2,odd = 4, M2,ev = M3,ev = 5, M3,odd = 6, and Mm,ev/odd = m+ 2 for m ≥ 4.

Proof. We proceed by induction on m. The case m = 0 was already indicated in the proof of
Lemma 3.8. Now, let m ≥ 1 and assume that the result holds for m− 1.

For φ ∈ C∞ev , i + j ≤ m with j > 0 and x ∈ R, we have |xiφ(j)(x)| = |xi(Tσφ)(j−1)(x)| with
Tσφ ∈ C∞odd, obtaining ‖φ‖Smw,σ ≤ ‖Tσφ‖Sm−1

w,σ
. But, by the induction hypothesis and because

Mm,ev = Mm−1,odd + 1, there are some C,C ′ > 0, independent of φ, such that ‖Tσφ‖Sm−1
w,σ
≤

C‖Tσφ‖SMm−1,odd
σ

≤ C ′‖φ‖SMm,evσ
.

For φ ∈ C∞odd, let ψ = x−1φ, and take i, j and x as above. We have∣∣xiφ(j)(x)
∣∣ ≤ ∣∣xi(Tσφ)(j−1)(x)

∣∣+ 2|σ|
∣∣xiψ(j−1)(x)

∣∣
with Tσφ, ψ ∈ C∞ev , obtaining ‖φ‖Smw,σ ≤ ‖Tσφ‖Sm−1

w,σ
+ 2|σ|‖ψ‖Sm−1

w,σ
. But, by the induction

hypothesis, Corollary 4.10, and since Mm,odd ≥Mm−1,ev + 1 and 2Mm,odd > Mm−1,ev + 6, there
are some C,C ′ > 0, independent of φ, such that

‖Tσφ‖Sm−1
w,σ

+ 2|σ|‖ψ‖Sm−1
w,σ
≤ C

(
‖φ′‖

S
Mm−1,ev
σ

+ ‖ψ‖
S
Mm−1,ev
σ

)
≤ C ′‖φ‖

S
Mm,odd
σ

. �

Corollary 4.14. S
M ′
m,ev/odd

σ,ev/odd ⊂ Smev/odd continuously, where, with the notation of Lemma 4.13,

M ′m,ev/odd = Mmσ ,ev/odd for mσ = m+ 1 + 1
2dσe(dσe+ 1).

Proof. This follows from Lemmas 3.2, 3.4 and 4.13. �

Corollary 4.15. Sσ = S as Fréchet spaces.

Proof. This is a consequence of Corollaries 3.10 and 4.14 �

Corollaries 3.10 and 4.14 and Propositions 4.2 and 4.3 give Theorems 1.1 and 1.2.
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5 Perturbations of H on R+

Since the function |x|2σ is even, the decomposition S = Sev ⊕ Sodd extends to an orthogonal
decomposition

L2
(
R, |x|2σdx

)
= L2

ev

(
R, |x|2σdx

)
⊕ L2

odd

(
R, |x|2σdx

)
.

Let Lev/odd and Lev/odd, or Lσ,ev/odd and Lσ,ev/odd, denote the corresponding components of L
and L. Lev/odd is essentially self-adjoint in L2

ev/odd(R, |x|2σdx), and its self-adjoint extension
is Lev/odd, which satisfies an obvious version of Corollary 1.3.

Fix an open subset U ⊂ R+ of full Lebesgue measure. Let Sev/odd,U ⊂ C∞(U) be the linear
subspace of restrictions to U of the functions in Sev/odd. The restriction to U defines a linear iso-
morphism Sev/odd

∼= Sev/odd,U , and a unitary isomorphism L2
ev/odd(R, |x|2σdx) ∼= L2(U, 2x2σdx).

Via these isomorphisms, Lev/odd corresponds to an operator Lev/odd,U on Sev/odd,U , and Lev/odd

corresponds to a self-adjoint operator Lev/odd,U in L2(U, x2σdx); the more explicit notation

Lσ,ev/odd,U and Lσ,ev/odd,U may be used. Let φk,U = φk|U , whose norm in L2(U, x2σdx) is 1/
√

2.

Going one step further, for any positive function h ∈ C2(U), the multiplication by h defines
a unitary isomorphism h : L2(U, x2σdx) → L2(U, x2σh−2dx). Thus hLev,Uh

−1, with domain
hSev,U , is essentially self-adjoint in L2(U, x2σh−2dx), and its self-adjoint extension is hLev,+h

−1.
Via these unitary isomorphisms, we get an obvious version of Corollary 1.3 for hLev,+h

−1. By
using [

d

dx
, h

]
= h′,

[
d2

dx2
, h

]
= 2h′

d

dx
+ h′′, (24)

it easily follows that hLev,Uh
−1has the form of P in Theorem 1.4. Then Theorem 1.4 is a con-

sequence of the following.

Lemma 5.1. For σ > −1/2, a positive function h ∈ C2(U), and P = H − 2f1
d

dx + f2 with
f1 ∈ C1(U) and f2 ∈ C(U), we have P = hLσ,ev,Uh

−1 on hSev,U if and only if f1, f2 and h
satisfy the conditions of Theorem 1.4.

Proof. By (24),

h−1Ph = H − 2
(
h−1h′ + f1

) d

dx
− h−1h′′ − 2h−1f1h

′ + f2.

So P = hLσ,ev,Uh
−1 if and only if h−1h′ = σx−1 − f1 and f2 = h−1h′′ + 2h−1h′f1, which are

easily seen to be equivalent to the conditions of Theorem 1.4. �

Remark 5.2. By (24), we get an operator of the same type if h and d
dx is interchanged in the

operator P of Theorem 1.4.

Remark 5.3. By using (24) with h = x−1 on R+, it is easy to check that Lσ,odd,R+ =
xL1+σ,ev,R+x

−1 on Sodd,R+ = xSev,R+ . So no new operators are obtained with this process
by using Lσ,odd instead of Lσ,ev.
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