| 
 SIGMA 10 (2014), 012, 13 pages      arXiv:1311.7005     
https://doi.org/10.3842/SIGMA.2014.012 
Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable
Alexei A. Deriglazov and Andrey M. Pupasov-Maksimov
 Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG, Brasil
 
 
Received December 17, 2013, in final form February 04, 2014; Published online February 08, 2014 
Abstract
 
Basic notions of Dirac theory of constrained systems have their analogs in differential
geometry. Combination of the two approaches gives more clear understanding of both classical and quantum mechanics,
when we deal with a model with complicated structure of constraints.
In this work we describe and discuss the spin fiber bundle which appeared in various mechanical models
where spin is described by vector-like variable.
  
 Key words:
semiclassical description of relativistic spin; Dirac equation; theories with constraints. 
pdf (402 kb)  
tex (46 kb)
 
 
References
 
- Bargmann V., Michel L., Telegdi V.L., Precession of the polarization of
  particles moving in a homogeneous electromagnetic field, Phys. Rev.
  Lett. 2 (1959), 435-436.
 
- Barut A.O., Bracken A.J., Zitterbewegung and the internal geometry of the
  electron, Phys. Rev. D 23 (1981), 2454-2463.
 
- Barut A.O., Thacker W., Covariant generalization of the Zitterbewegung of the
  electron and its SO(4,2) and SO(3,2) internal algebras,
  Phys. Rev. D 31 (1985), 1386-1392.
 
- Berezin F.A., Marinov M.S., Particle spin dynamics as the Grassmann variant of
  classical mechanics, Ann. Physics 104 (1977), 336-362.
 
- Cognola G., Vanzo L., Zerbini S., Soldati R., On the Lagrangian formulation of
  a charged spinning particle in an external electromagnetic field,
  Phys. Lett. B 104 (1981), 67-69.
 
- Corben H.C., Classical and quantum theories of spinning particles, Holden-Day,
  San Francisco, 1968.
 
- Deriglazov A.A., Classical mechanics: Hamiltonian and Lagrangian formalism,
  Springer, Heidelberg, 2010.
 
- Deriglazov A.A., Nonrelativistic spin: à la Berezin-Marinov quantization
  on a sphere, Modern Phys. Lett. A 25 (2010), 2769-2777.
 
- Deriglazov A.A., A semiclassical description of relativistic spin without the
  use of Grassmann variables and the Dirac equation, Ann. Physics
  327 (2012), 398-406, arXiv:1107.0273.
 
- Deriglazov A.A., Classical-mechanical models without observable trajectories
  and the Dirac electron, Phys. Lett. A 377 (2012), 13-17,
  arXiv:1203.5697.
 
- Deriglazov A.A., Spinning-particle model for the Dirac equation and the
  relativistic Zitterbewegung, Phys. Lett. A 376 (2012),
  309-313, arXiv:1106.5228.
 
- Deriglazov A.A., Variational problem for the Frenkel and the
  Bargmann-Michel-Telegdi (BMT) equations, Modern Phys.
  Lett. A 28 (2013), 1250234, 9 pages, arXiv:1204.2494.
 
- Deriglazov A.A., Variational problem for Hamiltonian system on SO(k,m)
  Lie-Poisson manifold and dynamics of semiclassical spin,
  arXiv:1211.1219.
 
- Deriglazov A.A., Evdokimov K.E., Local symmetries and the Noether identities
  in the Hamiltonian framework, Internat. J. Modern Phys. A
  15 (2000), 4045-4067, hep-th/9912179.
 
- Deriglazov A.A., Nersessian A., Rigid particle revisited: extrinsic curvature
  yields the Dirac equation, arXiv:1303.0483.
 
- Deriglazov A.A., Pupasov-Maksimov A.M., Lagrangian for Frenkel electron and
  position's non-commutativity due to spin, arXiv:1312.6247.
 
- Deriglazov A.A., Rizzuti B.F., Zamudio G.P., Castro P.S., Non-Grassmann
  mechanical model of the Dirac equation, J. Math. Phys. 53
  (2012), 122303, 31 pages, arXiv:1202.5757.
 
- Dirac P.A.M., Lectures on quantum mechanics, Belfer Graduate School of
  Science Monographs Series, Vol. 2, Belfer Graduate School of Science, New
  York, 1967.
 
- Foldy L.L., Wouthuysen S.A., On the Dirac theory of spin 1/2 particles and
  its non-relativistic limit, Phys. Rev. 78 (1950), 29-36.
 
- Frenkel J., Die Elektrodynamik des rotierenden Elektrons, Z. Phys.
  37 (1926), 243-262.
 
- Frenkel J., Spinning electrons, Nature 117 (1926), 653-654.
 
- Gavrilov S.P., Gitman D.M., Quantization of pointlike particles and consistent
  relativistic quantum mechanics, Internat. J. Modern Phys. A
  15 (2000), 4499-4538, hep-th/0003112.
 
- Gitman D.M., Tyutin I.V., Quantization of fields with constraints, Springer
  Series in Nuclear and Particle Physics, Springer-Verlag, Berlin, 1990.
 
- Grassberger P., Classical charged particles with spin, J. Phys. A:
  Math. Gen. 11 (1978), 1221-1226.
 
- Hanson A.J., Regge T., The relativistic spherical top, Ann. Physics
  87 (1974), 498-566.
 
- Laroze D., Gutiérrez G., Rivera R., Yáñez J.M., Dynamics of a
  rotating particle under a time-dependent potential: exact quantum solution
  from the classical action, Phys. Scr. 78 (2008), 015009,
  5 pages.
 
- Peletminskii A., Peletminskii S., Lagrangian and Hamiltonian formalisms for
  relativistic dynamics of a charged particle with dipole moment, Eur.
  Phys. J. C Part. Fields 42 (2005), 505-517.
 
- Ramirez W.G., Deriglazov A.A., Pupasov-Maksimov A.M., Frenkel electron and a
  spinning body in a curved background, arXiv:1311.5743.
 
 
 | 
 |