| 
 SIGMA 10 (2014), 016, 26 pages      arXiv:1308.1046     
https://doi.org/10.3842/SIGMA.2014.016 
Second Order Symmetries of the Conformal Laplacian
Jean-Philippe Michel a,  Fabian Radoux a and Josef Šilhan b
 a) Department of Mathematics of the University of Liège, Grande Traverse 12, 4000 Liège, Belgium
 b) Department of Algebra and Geometry of the Masaryk University in Brno, Janàčkovo nàm. 2a, 662 95 Brno, Czech Republic
 
 
Received October 25, 2013, in final form February 05, 2014; Published online February 14, 2014 
Abstract
 
Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3.
We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order.
They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant
condition. As a consequence, we get also the classification of the second order symmetries of the conformal
Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein
manifolds respectively. We illustrate our results on two families of examples in dimension three.
  
 Key words:
Laplacian; quantization; conformal geometry; separation of variables. 
pdf (503 kb)  
tex (35 kb)
 
 
References
 
- Bailey T.N., Eastwood M.G., Gover A.R., Thomas's structure bundle for
  conformal, projective and related structures, Rocky Mountain J.
  Math. 24 (1994), 1191-1217.
 
- Ballesteros Á., Enciso A., Herranz F.J., Ragnisco O., Riglioni D., Quantum
  mechanics on spaces of nonconstant curvature: the oscillator problem and
  superintegrability, Ann. Physics 326 (2011), 2053-2073,
  arXiv:1102.5494.
 
- Benenti S., Chanu C., Rastelli G., Remarks on the connection between the
  additive separation of the Hamilton-Jacobi equation and the
  multiplicative separation of the Schrödinger equation. II. First
  integrals and symmetry operators, J. Math. Phys. 43 (2002),
  5223-5253.
 
- Boe B.D., Collingwood D.H., A comparison theory for the structure of induced
  representations, J. Algebra 94 (1985), 511-545.
 
- Boe B.D., Collingwood D.H., A comparison theory for the structure of induced
  representations. II, Math. Z. 190 (1985), 1-11.
 
- Bonanos S., Riemannian geometry and tensor calculus (Mathematica package),
  Version 3.8.5, 2012, available at
  http://www.inp.demokritos.gr/~sbonano/RGTC/.
 
- Boyer C.P., Kalnins E.G., Miller Jr. W., Symmetry and separation of variables
  for the Helmholtz and Laplace equations, Nagoya Math. J.
  60 (1976), 35-80.
 
- Boyer C.P., Kalnins E.G., Miller Jr. W., R-separable coordinates for
  three-dimensional complex Riemannian spaces, Trans. Amer. Math.
  Soc. 242 (1978), 355-376.
 
- Cap A., Šilhan J., Equivariant quantizations for AHS-structures,
  Adv. Math. 224 (2010), 1717-1734, arXiv:0904.3278.
 
- Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand
  sequences, Ann. of Math. 154 (2001), 97-113,
  math.DG/0001164.
 
- Carter B., Killing tensor quantum numbers and conserved currents in curved
  space, Phys. Rev. D 16 (1977), 3395-3414.
 
- Duval C., Lecomte P., Ovsienko V., Conformally equivariant quantization:
  existence and uniqueness, Ann. Inst. Fourier (Grenoble) 49
  (1999), 1999-2029, math.DG/9902032.
 
- Duval C., Ovsienko V., Conformally equivariant quantum Hamiltonians,
  Selecta Math. (N.S.) 7 (2001), 291-320,
  math.DG/9801122.
 
- Duval C., Valent G., Quantum integrability of quadratic Killing tensors,
  J. Math. Phys. 46 (2005), 053516, 22 pages,
  math-ph/0412059.
 
- Eastwood M., Higher symmetries of the Laplacian, Ann. of Math.
  161 (2005), 1645-1665, hep-th/0206233.
 
- Eastwood M., Leistner T., Higher symmetries of the square of the Laplacian,
  in Symmetries and Overdetermined Systems of Partial Differential Equations,
  IMA Vol. Math. Appl., Vol. 144, Springer, New York, 2008, 319-338,
  math.DG/0610610.
 
- Fegan H.D., Conformally invariant first order differential operators,
  Quart. J. Math. Oxford (2) 27 (1976), 371-378.
 
- Gover A.R., Šilhan J., Higher symmetries of the conformal powers of the
  Laplacian on conformally flat manifolds, J. Math. Phys.
  53 (2012), 032301, 26 pages, arXiv:0911.5265.
 
- Kalnins E.G., Miller Jr. W., Intrinsic characterisation of orthogonal R
  separation for Laplace equations, J. Phys. A: Math. Gen.
  15 (1982), 2699-2709.
 
- Kolář I., Michor P.W., Slovák J., Natural operations in
  differential geometry, Springer-Verlag, Berlin, 1993, available at
  http://www.emis.de/monographs/KSM/.
 
- Kozaki H., Koike T., Ishihara H., Exactly solvable strings in Minkowski
  spacetime, Classical Quantum Gravity 27 (2010), 105006,
  10 pages, arXiv:0907.2273.
 
- Lecomte P.B.A., Towards projectively equivariant quantization, Progr.
  Theoret. Phys. Suppl. 144 (2001), 125-132.
 
- Loubon Djounga S.E., Conformally invariant quantization at order three,
  Lett. Math. Phys. 64 (2003), 203-212.
 
- Mathonet P., Radoux F., On natural and conformally equivariant quantizations,
  J. Lond. Math. Soc. 80 (2009), 256-272,
  arXiv:0707.1412.
 
- Mathonet P., Radoux F., Existence of natural and conformally invariant
  quantizations of arbitrary symbols, J. Nonlinear Math. Phys.
  17 (2010), 539-556, arXiv:0811.3710.
 
- Michel J.-P., Higher symmetries of Laplacian via quantization, Ann.
  Inst. Fourier (Grenoble), to appear, arXiv:1107.5840.
 
- Penrose R., Rindler W., Spinors and space-time. Vol. 1. Two-spinor calculus
  and relativistic fields, Cambridge Monographs on Mathematical Physics,
  Cambridge University Press, Cambridge, 1984.
 
- Perelomov A.M., Integrable systems of classical mechanics and Lie algebras.
  Vol. I, Birkhäuser Verlag, Basel, 1990.
 
- Radoux F., An explicit formula for the natural and conformally invariant
  quantization, Lett. Math. Phys. 89 (2009), 249-263,
  arXiv:0902.1543.
 
- Šilhan J., Conformally invariant quantization - towards the complete
  classification, Differential Geom. Appl. 33 (2014), suppl.,
  162-176, arXiv:0903.4798.
 
- Vlasáková Z., Symmetries of CR sub-Laplacian, arXiv:1201.6219.
 
 
 | 
 |